adnaniqbal001 commited on
Commit
2210613
·
verified ·
1 Parent(s): aa8c111

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import PyPDF2
3
+ from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
4
+ from sentence_transformers import SentenceTransformer
5
+ import torch
6
+ from google.colab import files
7
+
8
+ # Step 1: Upload the PDF file
9
+ print("Please upload a PDF file containing the chapter.")
10
+ uploaded = files.upload()
11
+
12
+ # Extract the name of the uploaded file
13
+ file_name = list(uploaded.keys())[0]
14
+
15
+ # Step 2: Extract text from the PDF
16
+ def extract_text_from_pdf(file_path):
17
+ text = ""
18
+ with open(file_path, 'rb') as file:
19
+ pdf_reader = PyPDF2.PdfReader(file)
20
+ for page in pdf_reader.pages:
21
+ text += page.extract_text()
22
+ return text
23
+
24
+ chapter_text = extract_text_from_pdf(file_name)
25
+ print("Text extracted from the PDF successfully!")
26
+
27
+ # Step 3: Split the text into smaller passages
28
+ def split_text_into_chunks(text, chunk_size=500):
29
+ """Split the text into chunks of size chunk_size."""
30
+ words = text.split()
31
+ chunks = []
32
+ for i in range(0, len(words), chunk_size):
33
+ chunk = " ".join(words[i:i + chunk_size])
34
+ chunks.append(chunk)
35
+ return chunks
36
+
37
+ passages = split_text_into_chunks(chapter_text)
38
+ print(f"Chapter split into {len(passages)} passages for RAG processing.")
39
+
40
+ # Step 4: Initialize the RAG model and tokenizer
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ # Load the RAG model, tokenizer, and retriever
44
+ tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
45
+ retriever = RagRetriever.from_pretrained(
46
+ "facebook/rag-token-nq",
47
+ index_name="custom",
48
+ passages=passages, # Set passages as the custom index
49
+ use_dummy_dataset=True, # Dummy dataset required for custom index
50
+ )
51
+ model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq").to(device)
52
+
53
+ # Step 5: Encode passages into embeddings for retrieval
54
+ sentence_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
55
+ passage_embeddings = sentence_model.encode(passages, convert_to_tensor=True)
56
+ retriever.index.set_passages(passages, passage_embeddings.cpu().detach().numpy())
57
+ print("Passages indexed successfully!")
58
+
59
+ # Step 6: Define a function to generate answers
60
+ def generate_answer(question, passages):
61
+ inputs = tokenizer.prepare_seq2seq_batch(
62
+ questions=[question], return_tensors="pt"
63
+ ).to(device)
64
+ generated_ids = model.generate(**inputs)
65
+ answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
66
+ return answer
67
+
68
+ # Step 7: Interactive Question-Answering
69
+ print("\nChapter is ready. You can now ask questions!")
70
+ while True:
71
+ user_question = input("\nEnter your question (or type 'exit' to quit): ")
72
+ if user_question.lower() == "exit":
73
+ print("Exiting the application. Thank you!")
74
+ break
75
+ try:
76
+ answer = generate_answer(user_question, passages)
77
+ print(f"Answer: {answer}")
78
+ except Exception as e:
79
+ print(f"An error occurred: {e}")