Update app.py
Browse files
app.py
CHANGED
|
@@ -2,21 +2,21 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import torchvision.transforms as transforms
|
| 5 |
-
from model import SiameseNetwork
|
|
|
|
| 6 |
|
| 7 |
-
# Define the device (GPU or CPU)
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
|
| 10 |
-
|
| 11 |
model = SiameseNetwork().to(device)
|
| 12 |
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
| 13 |
model.eval()
|
| 14 |
|
| 15 |
-
|
| 16 |
transform = transforms.Compose([
|
| 17 |
-
transforms.Resize((100, 100)),
|
| 18 |
-
transforms.Grayscale(num_output_channels=1),
|
| 19 |
-
transforms.ToTensor(), #
|
| 20 |
])
|
| 21 |
|
| 22 |
# Streamlit interface
|
|
@@ -28,29 +28,29 @@ image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "j
|
|
| 28 |
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
| 29 |
|
| 30 |
if image1 and image2:
|
| 31 |
-
|
| 32 |
img1 = Image.open(image1).convert("RGB")
|
| 33 |
img2 = Image.open(image2).convert("RGB")
|
| 34 |
|
| 35 |
-
|
| 36 |
col1, col2 = st.columns(2)
|
| 37 |
with col1:
|
| 38 |
st.image(img1, caption='First Signature Image', use_container_width=True)
|
| 39 |
with col2:
|
| 40 |
st.image(img2, caption='Second Signature Image', use_container_width=True)
|
| 41 |
|
| 42 |
-
#
|
| 43 |
img1 = transform(img1).unsqueeze(0).to(device)
|
| 44 |
img2 = transform(img2).unsqueeze(0).to(device)
|
| 45 |
|
| 46 |
-
#
|
| 47 |
output1, output2 = model(img1, img2)
|
| 48 |
euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
threshold = 0.5
|
| 52 |
|
| 53 |
-
# Display
|
| 54 |
st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
|
| 55 |
if euclidean_distance.item() < threshold:
|
| 56 |
st.write("The signatures are likely from the **same person**.")
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import torchvision.transforms as transforms
|
| 5 |
+
from model import SiameseNetwork
|
| 6 |
+
|
| 7 |
|
|
|
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
|
| 10 |
+
|
| 11 |
model = SiameseNetwork().to(device)
|
| 12 |
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
| 13 |
model.eval()
|
| 14 |
|
| 15 |
+
|
| 16 |
transform = transforms.Compose([
|
| 17 |
+
transforms.Resize((100, 100)),
|
| 18 |
+
transforms.Grayscale(num_output_channels=1),
|
| 19 |
+
transforms.ToTensor(), # Converting image to tensor
|
| 20 |
])
|
| 21 |
|
| 22 |
# Streamlit interface
|
|
|
|
| 28 |
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
| 29 |
|
| 30 |
if image1 and image2:
|
| 31 |
+
|
| 32 |
img1 = Image.open(image1).convert("RGB")
|
| 33 |
img2 = Image.open(image2).convert("RGB")
|
| 34 |
|
| 35 |
+
## Displaying input image
|
| 36 |
col1, col2 = st.columns(2)
|
| 37 |
with col1:
|
| 38 |
st.image(img1, caption='First Signature Image', use_container_width=True)
|
| 39 |
with col2:
|
| 40 |
st.image(img2, caption='Second Signature Image', use_container_width=True)
|
| 41 |
|
| 42 |
+
# Transforming the images before feeding them into the model
|
| 43 |
img1 = transform(img1).unsqueeze(0).to(device)
|
| 44 |
img2 = transform(img2).unsqueeze(0).to(device)
|
| 45 |
|
| 46 |
+
# Predicting similarity using the Siamese model
|
| 47 |
output1, output2 = model(img1, img2)
|
| 48 |
euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
|
| 49 |
|
| 50 |
+
# Setting a threshold for similarity
|
| 51 |
+
threshold = 0.5
|
| 52 |
|
| 53 |
+
# Display similaritying score and interpretation
|
| 54 |
st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
|
| 55 |
if euclidean_distance.item() < threshold:
|
| 56 |
st.write("The signatures are likely from the **same person**.")
|