Spaces:
Runtime error
Runtime error
first commit
Browse files- .gitignore +0 -0
- README.md +7 -7
- assets/test_image_35.png +0 -0
- assets/test_image_82.png +0 -0
- maskformer_demo.py +66 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
File without changes
|
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MaskFormer Demo
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.1.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
assets/test_image_35.png
ADDED
|
assets/test_image_82.png
ADDED
|
maskformer_demo.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import random
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Use GPU if available
|
| 9 |
+
if torch.cuda.is_available():
|
| 10 |
+
device = torch.device("cuda")
|
| 11 |
+
else:
|
| 12 |
+
device = torch.device("cpu")
|
| 13 |
+
|
| 14 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade").to(device)
|
| 15 |
+
model.eval()
|
| 16 |
+
preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def visualize_instance_seg_mask(mask):
|
| 20 |
+
# Initialize image
|
| 21 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
| 22 |
+
|
| 23 |
+
labels = np.unique(mask)
|
| 24 |
+
label2color = {label: (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels}
|
| 25 |
+
|
| 26 |
+
for i in range(image.shape[0]):
|
| 27 |
+
for j in range(image.shape[1]):
|
| 28 |
+
image[i, j, :] = label2color[mask[i, j]]
|
| 29 |
+
|
| 30 |
+
image = image / 255
|
| 31 |
+
return image
|
| 32 |
+
|
| 33 |
+
def query_image(img):
|
| 34 |
+
target_size = (img.shape[0], img.shape[1])
|
| 35 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
outputs = model(**inputs)
|
| 39 |
+
|
| 40 |
+
outputs.class_queries_logits = outputs.class_queries_logits.cpu()
|
| 41 |
+
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
|
| 42 |
+
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
|
| 43 |
+
results = torch.argmax(results, dim=0).numpy()
|
| 44 |
+
results = visualize_instance_seg_mask(results)
|
| 45 |
+
|
| 46 |
+
return results
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
description = """
|
| 50 |
+
Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/maskformer">MaskFormer</a>,
|
| 51 |
+
introduced in <a href="https://arxiv.org/abs/2107.06278">Per-Pixel Classification is Not All You Need for Semantic Segmentation
|
| 52 |
+
</a>.
|
| 53 |
+
\n\n"Mask2Former is a unified framework architecture based on MaskFormer meta-architecture that achieves SOTA on panoptic,
|
| 54 |
+
instance and semantic segmentation across four popular datasets (ADE20K, Cityscapes, COCO, Mapillary Vistas). You can use
|
| 55 |
+
MaskFormer for semantic, instance (illustrated in the demo) and panoptic segmentation.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
demo = gr.Interface(
|
| 59 |
+
query_image,
|
| 60 |
+
inputs=[gr.Image()],
|
| 61 |
+
outputs="image",
|
| 62 |
+
title="MaskFormer Demo",
|
| 63 |
+
description=description,
|
| 64 |
+
examples=["assets/test_image_35.png", "assets/test_image_82.png"]
|
| 65 |
+
)
|
| 66 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install -r requirements.txt
|
| 2 |
+
|
| 3 |
+
numpy>=1.18.5
|
| 4 |
+
torch>=1.7.0
|
| 5 |
+
torchvision>=0.8.1
|
| 6 |
+
transformers
|
| 7 |
+
opencv-python
|