merge CLIPSeg demo
Browse files
app.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from PIL import Image
|
| 4 |
import os
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
| 6 |
from diffusers import DiffusionPipeline
|
|
|
|
| 7 |
|
| 8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
pipe = DiffusionPipeline.from_pretrained(
|
| 11 |
"Fantasy-Studio/Paint-by-Example",
|
| 12 |
torch_dtype=torch.float16,
|
|
@@ -14,14 +19,25 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 14 |
pipe = pipe.to("cuda")
|
| 15 |
|
| 16 |
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
with open(file_path, 'r', encoding='utf-8') as f:
|
| 21 |
content = f.read()
|
| 22 |
-
|
| 23 |
return content
|
| 24 |
|
|
|
|
| 25 |
def predict(dict, reference, scale, seed, step):
|
| 26 |
width, height = dict["image"].size
|
| 27 |
if width < height:
|
|
@@ -123,8 +139,7 @@ with image_blocks as demo:
|
|
| 123 |
community_icon = gr.HTML(community_icon_html, visible=True)
|
| 124 |
loading_icon = gr.HTML(loading_icon_html, visible=True)
|
| 125 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
with gr.Row():
|
| 129 |
with gr.Column():
|
| 130 |
gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12)
|
|
@@ -134,8 +149,6 @@ with image_blocks as demo:
|
|
| 134 |
btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
|
| 135 |
share_button.click(None, [], [], _js=share_js)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
gr.HTML(
|
| 140 |
"""
|
| 141 |
<div class="footer">
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 8 |
|
| 9 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 10 |
|
| 11 |
+
|
| 12 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
| 13 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
| 14 |
+
|
| 15 |
pipe = DiffusionPipeline.from_pretrained(
|
| 16 |
"Fantasy-Studio/Paint-by-Example",
|
| 17 |
torch_dtype=torch.float16,
|
|
|
|
| 19 |
pipe = pipe.to("cuda")
|
| 20 |
|
| 21 |
|
| 22 |
+
def process_image(image, prompt):
|
| 23 |
+
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
|
| 24 |
+
|
| 25 |
+
# predict
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
outputs = model(**inputs)
|
| 28 |
+
preds = outputs.logits
|
| 29 |
+
|
| 30 |
+
filename = f"mask.png"
|
| 31 |
+
plt.imsave(filename, torch.sigmoid(preds))
|
| 32 |
+
return Image.open("mask.png").convert("RGB")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def read_content(file_path):
|
| 36 |
with open(file_path, 'r', encoding='utf-8') as f:
|
| 37 |
content = f.read()
|
|
|
|
| 38 |
return content
|
| 39 |
|
| 40 |
+
|
| 41 |
def predict(dict, reference, scale, seed, step):
|
| 42 |
width, height = dict["image"].size
|
| 43 |
if width < height:
|
|
|
|
| 139 |
community_icon = gr.HTML(community_icon_html, visible=True)
|
| 140 |
loading_icon = gr.HTML(loading_icon_html, visible=True)
|
| 141 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
| 142 |
+
|
|
|
|
| 143 |
with gr.Row():
|
| 144 |
with gr.Column():
|
| 145 |
gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12)
|
|
|
|
| 149 |
btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
|
| 150 |
share_button.click(None, [], [], _js=share_js)
|
| 151 |
|
|
|
|
|
|
|
| 152 |
gr.HTML(
|
| 153 |
"""
|
| 154 |
<div class="footer">
|