Spaces:
Sleeping
Sleeping
| # Copyright (C) 2021-2024, Mindee. | |
| # This program is licensed under the Apache License 2.0. | |
| # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
| from copy import deepcopy | |
| from typing import Any, Callable, Dict, List, Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torchvision.models._utils import IntermediateLayerGetter | |
| from doctr.datasets import VOCABS | |
| from ...classification import vit_b, vit_s | |
| from ...utils.pytorch import _bf16_to_float32, load_pretrained_params | |
| from .base import _ViTSTR, _ViTSTRPostProcessor | |
| __all__ = ["ViTSTR", "vitstr_small", "vitstr_base"] | |
| default_cfgs: Dict[str, Dict[str, Any]] = { | |
| "vitstr_small": { | |
| "mean": (0.694, 0.695, 0.693), | |
| "std": (0.299, 0.296, 0.301), | |
| "input_shape": (3, 32, 128), | |
| "vocab": VOCABS["french"], | |
| "url": "https://doctr-static.mindee.com/models?id=v0.7.0/vitstr_small-fcd12655.pt&src=0", | |
| }, | |
| "vitstr_base": { | |
| "mean": (0.694, 0.695, 0.693), | |
| "std": (0.299, 0.296, 0.301), | |
| "input_shape": (3, 32, 128), | |
| "vocab": VOCABS["french"], | |
| "url": "https://doctr-static.mindee.com/models?id=v0.7.0/vitstr_base-50b21df2.pt&src=0", | |
| }, | |
| } | |
| class ViTSTR(_ViTSTR, nn.Module): | |
| """Implements a ViTSTR architecture as described in `"Vision Transformer for Fast and | |
| Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. | |
| Args: | |
| ---- | |
| feature_extractor: the backbone serving as feature extractor | |
| vocab: vocabulary used for encoding | |
| embedding_units: number of embedding units | |
| max_length: maximum word length handled by the model | |
| dropout_prob: dropout probability of the encoder LSTM | |
| input_shape: input shape of the image | |
| exportable: onnx exportable returns only logits | |
| cfg: dictionary containing information about the model | |
| """ | |
| def __init__( | |
| self, | |
| feature_extractor, | |
| vocab: str, | |
| embedding_units: int, | |
| max_length: int = 32, # different from paper | |
| input_shape: Tuple[int, int, int] = (3, 32, 128), # different from paper | |
| exportable: bool = False, | |
| cfg: Optional[Dict[str, Any]] = None, | |
| ) -> None: | |
| super().__init__() | |
| self.vocab = vocab | |
| self.exportable = exportable | |
| self.cfg = cfg | |
| self.max_length = max_length + 2 # +2 for SOS and EOS | |
| self.feat_extractor = feature_extractor | |
| self.head = nn.Linear(embedding_units, len(self.vocab) + 1) # +1 for EOS | |
| self.postprocessor = ViTSTRPostProcessor(vocab=self.vocab) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| target: Optional[List[str]] = None, | |
| return_model_output: bool = False, | |
| return_preds: bool = False, | |
| ) -> Dict[str, Any]: | |
| features = self.feat_extractor(x)["features"] # (batch_size, patches_seqlen, d_model) | |
| if target is not None: | |
| _gt, _seq_len = self.build_target(target) | |
| gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len) | |
| gt, seq_len = gt.to(x.device), seq_len.to(x.device) | |
| if self.training and target is None: | |
| raise ValueError("Need to provide labels during training") | |
| # borrowed from : https://github.com/baudm/parseq/blob/main/strhub/models/vitstr/model.py | |
| features = features[:, : self.max_length] # (batch_size, max_length, d_model) | |
| B, N, E = features.size() | |
| features = features.reshape(B * N, E) | |
| logits = self.head(features).view(B, N, len(self.vocab) + 1) # (batch_size, max_length, vocab + 1) | |
| decoded_features = _bf16_to_float32(logits[:, 1:]) # remove cls_token | |
| out: Dict[str, Any] = {} | |
| if self.exportable: | |
| out["logits"] = decoded_features | |
| return out | |
| if return_model_output: | |
| out["out_map"] = decoded_features | |
| if target is None or return_preds: | |
| # Post-process boxes | |
| out["preds"] = self.postprocessor(decoded_features) | |
| if target is not None: | |
| out["loss"] = self.compute_loss(decoded_features, gt, seq_len) | |
| return out | |
| def compute_loss( | |
| model_output: torch.Tensor, | |
| gt: torch.Tensor, | |
| seq_len: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """Compute categorical cross-entropy loss for the model. | |
| Sequences are masked after the EOS character. | |
| Args: | |
| ---- | |
| model_output: predicted logits of the model | |
| gt: the encoded tensor with gt labels | |
| seq_len: lengths of each gt word inside the batch | |
| Returns: | |
| ------- | |
| The loss of the model on the batch | |
| """ | |
| # Input length : number of steps | |
| input_len = model_output.shape[1] | |
| # Add one for additional <eos> token (sos disappear in shift!) | |
| seq_len = seq_len + 1 | |
| # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]! | |
| # The "masked" first gt char is <sos>. | |
| cce = F.cross_entropy(model_output.permute(0, 2, 1), gt[:, 1:], reduction="none") | |
| # Compute mask | |
| mask_2d = torch.arange(input_len, device=model_output.device)[None, :] >= seq_len[:, None] | |
| cce[mask_2d] = 0 | |
| ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype) | |
| return ce_loss.mean() | |
| class ViTSTRPostProcessor(_ViTSTRPostProcessor): | |
| """Post processor for ViTSTR architecture | |
| Args: | |
| ---- | |
| vocab: string containing the ordered sequence of supported characters | |
| """ | |
| def __call__( | |
| self, | |
| logits: torch.Tensor, | |
| ) -> List[Tuple[str, float]]: | |
| # compute pred with argmax for attention models | |
| out_idxs = logits.argmax(-1) | |
| preds_prob = torch.softmax(logits, -1).max(dim=-1)[0] | |
| # Manual decoding | |
| word_values = [ | |
| "".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0] | |
| for encoded_seq in out_idxs.cpu().numpy() | |
| ] | |
| # compute probabilties for each word up to the EOS token | |
| probs = [ | |
| preds_prob[i, : len(word)].clip(0, 1).mean().item() if word else 0.0 for i, word in enumerate(word_values) | |
| ] | |
| return list(zip(word_values, probs)) | |
| def _vitstr( | |
| arch: str, | |
| pretrained: bool, | |
| backbone_fn: Callable[[bool], nn.Module], | |
| layer: str, | |
| ignore_keys: Optional[List[str]] = None, | |
| **kwargs: Any, | |
| ) -> ViTSTR: | |
| # Patch the config | |
| _cfg = deepcopy(default_cfgs[arch]) | |
| _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) | |
| _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) | |
| patch_size = kwargs.get("patch_size", (4, 8)) | |
| kwargs["vocab"] = _cfg["vocab"] | |
| kwargs["input_shape"] = _cfg["input_shape"] | |
| # Feature extractor | |
| feat_extractor = IntermediateLayerGetter( | |
| # NOTE: we don't use a pretrained backbone for non-rectangular patches to avoid the pos embed mismatch | |
| backbone_fn(False, input_shape=_cfg["input_shape"], patch_size=patch_size), # type: ignore[call-arg] | |
| {layer: "features"}, | |
| ) | |
| kwargs.pop("patch_size", None) | |
| kwargs.pop("pretrained_backbone", None) | |
| # Build the model | |
| model = ViTSTR(feat_extractor, cfg=_cfg, **kwargs) | |
| # Load pretrained parameters | |
| if pretrained: | |
| # The number of classes is not the same as the number of classes in the pretrained model => | |
| # remove the last layer weights | |
| _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None | |
| load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) | |
| return model | |
| def vitstr_small(pretrained: bool = False, **kwargs: Any) -> ViTSTR: | |
| """ViTSTR-Small as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" | |
| <https://arxiv.org/pdf/2105.08582.pdf>`_. | |
| >>> import torch | |
| >>> from doctr.models import vitstr_small | |
| >>> model = vitstr_small(pretrained=False) | |
| >>> input_tensor = torch.rand((1, 3, 32, 128)) | |
| >>> out = model(input_tensor) | |
| Args: | |
| ---- | |
| pretrained (bool): If True, returns a model pre-trained on our text recognition dataset | |
| kwargs: keyword arguments of the ViTSTR architecture | |
| Returns: | |
| ------- | |
| text recognition architecture | |
| """ | |
| return _vitstr( | |
| "vitstr_small", | |
| pretrained, | |
| vit_s, | |
| "1", | |
| embedding_units=384, | |
| patch_size=(4, 8), | |
| ignore_keys=["head.weight", "head.bias"], | |
| **kwargs, | |
| ) | |
| def vitstr_base(pretrained: bool = False, **kwargs: Any) -> ViTSTR: | |
| """ViTSTR-Base as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" | |
| <https://arxiv.org/pdf/2105.08582.pdf>`_. | |
| >>> import torch | |
| >>> from doctr.models import vitstr_base | |
| >>> model = vitstr_base(pretrained=False) | |
| >>> input_tensor = torch.rand((1, 3, 32, 128)) | |
| >>> out = model(input_tensor) | |
| Args: | |
| ---- | |
| pretrained (bool): If True, returns a model pre-trained on our text recognition dataset | |
| kwargs: keyword arguments of the ViTSTR architecture | |
| Returns: | |
| ------- | |
| text recognition architecture | |
| """ | |
| return _vitstr( | |
| "vitstr_base", | |
| pretrained, | |
| vit_b, | |
| "1", | |
| embedding_units=768, | |
| patch_size=(4, 8), | |
| ignore_keys=["head.weight", "head.bias"], | |
| **kwargs, | |
| ) | |