Spaces:
Sleeping
Sleeping
| # Copyright (C) 2021-2024, Mindee. | |
| # This program is licensed under the Apache License 2.0. | |
| # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
| import math | |
| from copy import deepcopy | |
| from functools import partial | |
| from typing import Any, Dict, List, Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from doctr.datasets import VOCABS | |
| from ...utils.pytorch import load_pretrained_params | |
| from ..resnet.pytorch import ResNet | |
| __all__ = ["magc_resnet31"] | |
| default_cfgs: Dict[str, Dict[str, Any]] = { | |
| "magc_resnet31": { | |
| "mean": (0.694, 0.695, 0.693), | |
| "std": (0.299, 0.296, 0.301), | |
| "input_shape": (3, 32, 32), | |
| "classes": list(VOCABS["french"]), | |
| "url": "https://doctr-static.mindee.com/models?id=v0.4.1/magc_resnet31-857391d8.pt&src=0", | |
| }, | |
| } | |
| class MAGC(nn.Module): | |
| """Implements the Multi-Aspect Global Context Attention, as described in | |
| <https://arxiv.org/pdf/1910.02562.pdf>`_. | |
| Args: | |
| ---- | |
| inplanes: input channels | |
| headers: number of headers to split channels | |
| attn_scale: if True, re-scale attention to counteract the variance distibutions | |
| ratio: bottleneck ratio | |
| **kwargs | |
| """ | |
| def __init__( | |
| self, | |
| inplanes: int, | |
| headers: int = 8, | |
| attn_scale: bool = False, | |
| ratio: float = 0.0625, # bottleneck ratio of 1/16 as described in paper | |
| cfg: Optional[Dict[str, Any]] = None, | |
| ) -> None: | |
| super().__init__() | |
| self.headers = headers | |
| self.inplanes = inplanes | |
| self.attn_scale = attn_scale | |
| self.planes = int(inplanes * ratio) | |
| self.single_header_inplanes = int(inplanes / headers) | |
| self.conv_mask = nn.Conv2d(self.single_header_inplanes, 1, kernel_size=1) | |
| self.softmax = nn.Softmax(dim=1) | |
| self.transform = nn.Sequential( | |
| nn.Conv2d(self.inplanes, self.planes, kernel_size=1), | |
| nn.LayerNorm([self.planes, 1, 1]), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(self.planes, self.inplanes, kernel_size=1), | |
| ) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| batch, _, height, width = inputs.size() | |
| # (N * headers, C / headers, H , W) | |
| x = inputs.view(batch * self.headers, self.single_header_inplanes, height, width) | |
| shortcut = x | |
| # (N * headers, C / headers, H * W) | |
| shortcut = shortcut.view(batch * self.headers, self.single_header_inplanes, height * width) | |
| # (N * headers, 1, H, W) | |
| context_mask = self.conv_mask(x) | |
| # (N * headers, H * W) | |
| context_mask = context_mask.view(batch * self.headers, -1) | |
| # scale variance | |
| if self.attn_scale and self.headers > 1: | |
| context_mask = context_mask / math.sqrt(self.single_header_inplanes) | |
| # (N * headers, H * W) | |
| context_mask = self.softmax(context_mask) | |
| # (N * headers, C / headers) | |
| context = (shortcut * context_mask.unsqueeze(1)).sum(-1) | |
| # (N, C, 1, 1) | |
| context = context.view(batch, self.headers * self.single_header_inplanes, 1, 1) | |
| # Transform: B, C, 1, 1 -> B, C, 1, 1 | |
| transformed = self.transform(context) | |
| return inputs + transformed | |
| def _magc_resnet( | |
| arch: str, | |
| pretrained: bool, | |
| num_blocks: List[int], | |
| output_channels: List[int], | |
| stage_stride: List[int], | |
| stage_conv: List[bool], | |
| stage_pooling: List[Optional[Tuple[int, int]]], | |
| ignore_keys: Optional[List[str]] = None, | |
| **kwargs: Any, | |
| ) -> ResNet: | |
| kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"])) | |
| kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"]) | |
| _cfg = deepcopy(default_cfgs[arch]) | |
| _cfg["num_classes"] = kwargs["num_classes"] | |
| _cfg["classes"] = kwargs["classes"] | |
| kwargs.pop("classes") | |
| # Build the model | |
| model = ResNet( | |
| num_blocks, | |
| output_channels, | |
| stage_stride, | |
| stage_conv, | |
| stage_pooling, | |
| attn_module=partial(MAGC, headers=8, attn_scale=True), | |
| cfg=_cfg, | |
| **kwargs, | |
| ) | |
| # Load pretrained parameters | |
| if pretrained: | |
| # The number of classes is not the same as the number of classes in the pretrained model => | |
| # remove the last layer weights | |
| _ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None | |
| load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) | |
| return model | |
| def magc_resnet31(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
| """Resnet31 architecture with Multi-Aspect Global Context Attention as described in | |
| `"MASTER: Multi-Aspect Non-local Network for Scene Text Recognition", | |
| <https://arxiv.org/pdf/1910.02562.pdf>`_. | |
| >>> import torch | |
| >>> from doctr.models import magc_resnet31 | |
| >>> model = magc_resnet31(pretrained=False) | |
| >>> input_tensor = torch.rand((1, 3, 224, 224), dtype=tf.float32) | |
| >>> out = model(input_tensor) | |
| Args: | |
| ---- | |
| pretrained: boolean, True if model is pretrained | |
| **kwargs: keyword arguments of the ResNet architecture | |
| Returns: | |
| ------- | |
| A feature extractor model | |
| """ | |
| return _magc_resnet( | |
| "magc_resnet31", | |
| pretrained, | |
| [1, 2, 5, 3], | |
| [256, 256, 512, 512], | |
| [1, 1, 1, 1], | |
| [True] * 4, | |
| [(2, 2), (2, 1), None, None], | |
| origin_stem=False, | |
| stem_channels=128, | |
| ignore_keys=["13.weight", "13.bias"], | |
| **kwargs, | |
| ) | |