Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,32 +4,54 @@ from transformers import pipeline
|
|
4 |
|
5 |
import streamlit as st
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
return summarizer(df)
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
st.
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
if uploaded_file is not None:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
submit = st.button("Generate")
|
33 |
-
if submit:
|
34 |
-
st.subheader("The response is")
|
35 |
-
st.write(response)
|
|
|
4 |
|
5 |
import streamlit as st
|
6 |
|
7 |
+
def preprocess_text(element):
|
8 |
+
# Extract text content
|
9 |
+
text = element.get_text().strip()
|
10 |
|
11 |
+
# Remove non-textual elements
|
12 |
+
text = re.sub(r'[^\w\s]', '', text) # Replace with your preferred regular expression
|
|
|
13 |
|
14 |
+
# Remove stop words (optional)
|
15 |
+
# from nltk.corpus import stopwords
|
16 |
+
# stop_words = set(stopwords.words('english'))
|
17 |
+
# text = " ".join([word for word in text.split() if word not in stop_words])
|
18 |
|
19 |
+
# Convert to lowercase (optional)
|
20 |
+
# text = text.lower()
|
21 |
|
22 |
+
return text
|
23 |
|
24 |
+
def get_openai_response(text, length=100, model="gpt-3.5-turbo-instruct"):
|
25 |
+
summarizer = pipeline("summarization", model=model)
|
26 |
+
return summarizer(text, max_length=length)
|
27 |
+
|
28 |
+
## Streamlit app
|
29 |
|
30 |
+
st.set_page_config(page_title="Trail Demo")
|
31 |
+
st.header("PDF Summarizer")
|
32 |
|
33 |
+
# User options
|
34 |
+
st.subheader("Settings")
|
35 |
+
summary_length = st.slider("Summary Length", min_value=50, max_value=500, value=100)
|
36 |
+
summarization_model = st.selectbox("Summarization Model", ["gpt-3.5-turbo-instruct", "t5-small"])
|
37 |
|
38 |
+
# File upload and processing
|
39 |
+
uploaded_file = st.file_uploader("Choose a PDF file")
|
40 |
if uploaded_file is not None:
|
41 |
+
with st.spinner("Processing..."):
|
42 |
+
text = ""
|
43 |
+
for page_layout in extract_pages(uploaded_file):
|
44 |
+
for element in page_layout:
|
45 |
+
text += preprocess_text(element) + "\n"
|
46 |
+
if text:
|
47 |
+
st.subheader("Extracted Text")
|
48 |
+
st.write(text)
|
49 |
+
submit = st.button("Generate Summary")
|
50 |
+
if submit:
|
51 |
+
st.spinner("Summarizing...")
|
52 |
+
response = get_openai_response(text, length=summary_length, model=summarization_model)
|
53 |
+
st.subheader("Summary")
|
54 |
+
st.write(response[0]["summary_text"])
|
55 |
+
else:
|
56 |
+
st.error("No text found in the PDF.")
|
57 |
|
|
|
|
|
|
|
|