Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ def preprocess_text(element):
|
|
33 |
return ""
|
34 |
|
35 |
|
36 |
-
def answer_question(text, question):
|
37 |
"""Answers a question using the provided text and a pre-trained model.
|
38 |
|
39 |
Args:
|
@@ -43,11 +43,15 @@ def answer_question(text, question):
|
|
43 |
Returns:
|
44 |
The answer extracted from the text using the model.
|
45 |
"""
|
46 |
-
qa_model_name = "bert-base-uncased" # Replace with your chosen
|
47 |
|
48 |
qa_model = TFBertForQuestionAnswering.from_pretrained(qa_model_name)
|
49 |
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
50 |
|
|
|
|
|
|
|
|
|
51 |
inputs = tokenizer(question, text, return_tensors="tf") # Tokenize inputs for TensorFlow
|
52 |
|
53 |
start_logits, end_logits = qa_model(inputs)
|
|
|
33 |
return ""
|
34 |
|
35 |
|
36 |
+
def answer_question(text, question, max_length=512):
|
37 |
"""Answers a question using the provided text and a pre-trained model.
|
38 |
|
39 |
Args:
|
|
|
43 |
Returns:
|
44 |
The answer extracted from the text using the model.
|
45 |
"""
|
46 |
+
qa_model_name = "bert-base-uncased" # Replace with your chosen model
|
47 |
|
48 |
qa_model = TFBertForQuestionAnswering.from_pretrained(qa_model_name)
|
49 |
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
50 |
|
51 |
+
# Truncate text if necessary
|
52 |
+
if len(text) > max_length:
|
53 |
+
text = text[:max_length]
|
54 |
+
|
55 |
inputs = tokenizer(question, text, return_tensors="tf") # Tokenize inputs for TensorFlow
|
56 |
|
57 |
start_logits, end_logits = qa_model(inputs)
|