File size: 2,226 Bytes
44f0770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import streamlit as st
import cv2
import numpy as np  
from ultralytics import YOLO
from PIL import Image
import tempfile

# Directly set the path for the model
MODEL_PATH = 'best.pt'

# Initialize YOLO model with custom trained weights
model = YOLO(MODEL_PATH)

def detect_rhino_image(image):
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    results = model(image)[0]
    for box in results.boxes.data.tolist():
        x1, y1, x2, y2, score, class_id = box
        if score > 0.5:
            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4)
            cv2.putText(image, results.names[int(class_id)].upper(), (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)
    return image

def detect_rhino_video(video_file):
    cap = cv2.VideoCapture(video_file.name)
    ret, frame = cap.read()
    H, W, _ = frame.shape
    out = cv2.VideoWriter(video_file.name + '_output.mp4', cv2.VideoWriter_fourcc(*'MP4V'), int(cap.get(cv2.CAP_PROP_FPS)), (W, H))
    while ret:
        results = model(frame)[0]
        for box in results.boxes.data.tolist():
            x1, y1, x2, y2, score, class_id = box
            if score > 0.5:
                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4)
                cv2.putText(frame, results.names[int(class_id)].upper(), (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)
        out.write(frame)
        ret, frame = cap.read()
    cap.release()
    out.release()
    cv2.destroyAllWindows()
    return video_file.name + '_output.mp4'

st.title('Rhinoceros Detection App')

st.write("Upload an image or video of rhinoceroses for detection.")

file = st.file_uploader("Choose a file...", type=["jpg", "jpeg", "png", "mp4"])
if file is not None:
    if file.type.split('/')[0] == 'image':
        image = Image.open(file)
        st.image(detect_rhino_image(image), caption='Processed Image', use_column_width=True)
    elif file.type.split('/')[0] == 'video':
        tfile = tempfile.NamedTemporaryFile(delete=False)
        tfile.write(file.read())
        processed_video = detect_rhino_video(tfile)
        st.video(processed_video)