import gradio as gr import torch import torchaudio from transformers import MusicgenForConditionalGeneration, MusicgenProcessor model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-melody", torch_dtype=torch.float32) processor = MusicgenProcessor.from_pretrained("facebook/musicgen-melody") def generate_music(prompt, melody): if melody is None: return None # Load and resample melody to 32kHz melody_waveform, melody_sr = torchaudio.load(melody) if melody_sr != 32000: resampler = torchaudio.transforms.Resample(orig_freq=melody_sr, new_freq=32000) melody_waveform = resampler(melody_waveform) # Trim or pad to 30 seconds melody_waveform = melody_waveform[:, :32000 * 30] # Run the model inputs = processor(audio=melody_waveform, sampling_rate=32000, text=[prompt], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=1024) audio_array = outputs[0].cpu().numpy() return (audio_array, model.config.audio_encoder.sampling_rate) demo = gr.Interface( fn=generate_music, inputs=[ gr.Textbox(label="Prompt", placeholder="e.g., mellow lofi beat with piano"), gr.Audio(source="upload", type="filepath", label="Melody Input (WAV or MP3)") ], outputs=gr.Audio(label="Generated Track"), title="🎵 MusicGen-Melody AI Generator", description="Upload a melody and describe the vibe. Generates music using Meta’s MusicGen-Melody model." ) demo.launch()