import gradio as gr from groq import Groq import os import time import whisper from gtts import gTTS api_key = os.getenv('GROQ_API_KEY') # Initialize Groq client client = Groq(api_key=api_key) # Load Whisper model whisper_model = whisper.load_model("base") # You can use "tiny", "base", "small", "medium", or "large" # Function to convert audio to text def audio_to_text(audio_file): # Use Whisper to transcribe audio result = whisper_model.transcribe(audio_file) return result['text'] # Function to convert text to audio def text_to_audio(text): tts = gTTS(text) audio_file = "output_audio.mp3" tts.save(audio_file) return audio_file # Function to generate responses with error handling def generate_response(user_input, chat_history: list): try: # Prepare messages with chat history messages = [{"role": "system", "content": "You are a mental health assistant. Your responses should be empathetic, non-judgmental, and provide helpful advice based on mental health principles. Always encourage seeking professional help when needed. Your responses should look human as well."}] # Iterate through chat history and add user and assistant messages for message in chat_history: # Ensure that each message contains only 'role' and 'content' keys if 'role' in message and 'content' in message: messages.append({"role": message["role"], "content": message["content"]}) else: print(f"Skipping invalid message: {message}") messages.append({"role": "user", "content": user_input}) # Add the current user message # Call Groq API to get a response from LLaMA chat_completion = client.chat.completions.create( messages=messages, model='llama-3.1-70b-versatile' ) # Extract response response = chat_completion.choices[0].message.content return response, chat_history # Ensure you return both response and chat_history except Exception as e: print(f"Error occurred: {e}") # Print error to console for debugging return "An error occurred while generating the response. Please try again.", chat_history # Define Gradio interface def gradio_interface(): with gr.Blocks() as demo: # Initialize chat history chat_history = [] # Create input textbox and button for clearing chat gr.Markdown("## LoserHero - A Mental Health Chatbot") chatbot = gr.Chatbot(type="messages") audio_input = gr.Audio(source="microphone", type="filepath", label="Speak your message") msg = gr.Textbox(placeholder="Type your message here...") text_output = gr.Textbox(label="Response (Text)") audio_output = gr.Audio(label="Response (Audio)") clear = gr.Button("Clear") def process_input(user_message, audio_file, history: list): if audio_file: user_message = audio_to_text(audio_file) if user_message: history.append({"role": "user", "content": user_message}) response, updated_history = generate_response(user_message, history) history = updated_history history.append({"role": "assistant", "content": response}) response_audio = text_to_audio(response) return "", None, response, response_audio, history return "", None, "Please provide a valid input.", None, history msg.submit(process_input, [msg, audio_input, chatbot], [msg, audio_input, text_output, audio_output, chatbot]) audio_input.change(process_input, [msg, audio_input, chatbot], [msg, audio_input, text_output, audio_output, chatbot]) clear.click(lambda: ("", None, "", None, []), None, [msg, audio_input, text_output, audio_output, chatbot]) demo.launch() # Run the interface gradio_interface()