adeelshuaib commited on
Commit
54fb593
·
verified ·
1 Parent(s): 8ebfb07

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -20
app.py CHANGED
@@ -1,8 +1,9 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
 
4
- # Use a pipeline as a high-level helper for text generation
5
- pipe = pipeline("text2text-generation", model="facebook/blenderbot-3B")
 
6
 
7
  def respond(
8
  message,
@@ -12,34 +13,49 @@ def respond(
12
  temperature,
13
  top_p,
14
  ):
 
15
  messages = [{"role": "system", "content": system_message}]
16
-
17
  for val in history:
18
- if val[0]:
19
  messages.append({"role": "user", "content": val[0]})
20
- if val[1]:
21
  messages.append({"role": "assistant", "content": val[1]})
22
-
23
- # Add the user's current message to the conversation context
24
  messages.append({"role": "user", "content": message})
25
 
26
- # The pipeline expects a list of texts, so we will generate a response
27
  input_text = "\n".join([msg["content"] for msg in messages if msg["role"] == "user"])
 
 
 
 
 
 
 
 
 
 
28
 
29
- # Generate the response
30
- response = pipe(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p)
31
-
32
- # Return the generated response
33
- yield response[0]['generated_text']
34
-
35
 
 
 
 
 
 
 
36
  """
37
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
38
- """
39
  demo = gr.ChatInterface(
40
  respond,
41
  additional_inputs=[
42
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
43
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
44
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
45
  gr.Slider(
@@ -52,6 +68,5 @@ demo = gr.ChatInterface(
52
  ],
53
  )
54
 
55
-
56
  if __name__ == "__main__":
57
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
 
4
+ # Load the tokenizer and model directly
5
+ tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-3B")
6
+ model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-3B")
7
 
8
  def respond(
9
  message,
 
13
  temperature,
14
  top_p,
15
  ):
16
+ # Compile the messages for context
17
  messages = [{"role": "system", "content": system_message}]
18
+
19
  for val in history:
20
+ if val[0]: # user message
21
  messages.append({"role": "user", "content": val[0]})
22
+ if val[1]: # assistant response
23
  messages.append({"role": "assistant", "content": val[1]})
24
+
 
25
  messages.append({"role": "user", "content": message})
26
 
27
+ # Concatenate messages as input text
28
  input_text = "\n".join([msg["content"] for msg in messages if msg["role"] == "user"])
29
+
30
+ # Tokenize input text and generate response
31
+ inputs = tokenizer(input_text, return_tensors="pt")
32
+ outputs = model.generate(
33
+ **inputs,
34
+ max_length=max_tokens,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ do_sample=True
38
+ )
39
 
40
+ # Decode the generated response
41
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
+
43
+ # Return response iteratively as tokens arrive (optional: can remove yield if streaming is not needed)
44
+ yield response
 
45
 
46
+ # Customize the system message for mental health support
47
+ default_system_message = """
48
+ You are a compassionate mental health specialist trained to listen empathetically and offer support.
49
+ When engaging with users, make sure to respond with kindness and provide general emotional support.
50
+ Avoid giving specific medical or clinical advice, but offer guidance, validate feelings, and suggest appropriate resources when needed.
51
+ Encourage open conversations and create a safe, non-judgmental space for the user to share.
52
  """
53
+
54
+ # Set up the Gradio interface
55
  demo = gr.ChatInterface(
56
  respond,
57
  additional_inputs=[
58
+ gr.Textbox(value=default_system_message, label="System Message (Mental Health Specialist)"),
59
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
60
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
61
  gr.Slider(
 
68
  ],
69
  )
70
 
 
71
  if __name__ == "__main__":
72
+ demo.launch()