|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
model_name = "adeel300/QA_T5_small" |
|
nlp = pipeline("text-generation", model=model_name) |
|
|
|
|
|
st.title("Hugging Face Model Inference") |
|
|
|
st.write("Enter your text below and get the model's response.") |
|
|
|
|
|
input_text = st.text_area("Input Text", value="", height=200) |
|
|
|
if st.button("Generate Response"): |
|
if input_text: |
|
with st.spinner("Generating response..."): |
|
response = nlp(input_text) |
|
st.success("Response generated!") |
|
st.text_area("Response", value=response[0]['generated_text'], height=200) |
|
else: |
|
st.warning("Please enter some text to generate a response.") |
|
|