Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import numpy as np | |
import pandas as pd | |
import dill | |
from sklearn.metrics import r2_score | |
from sklearn.model_selection import GridSearchCV | |
from src.exception import CustomException | |
def save_object(file_path, obj): | |
try: | |
dir_path = os.path.dirname(file_path) | |
os.makedirs(dir_path, exist_ok=True) | |
with open(file_path, "wb") as file_obj: | |
dill.dump(obj, file_obj) | |
except Exception as e: | |
raise CustomException(e, sys) | |
def evaluate_models(X_train,y_train,X_test,y_test,models,param): | |
try: | |
report={} | |
for i in range(len(list(models))): | |
model=list(models.values())[i] | |
para=param[list(models.keys())[i]] | |
gs = GridSearchCV(model,para,cv=3) | |
gs.fit(X_train,y_train) | |
model.set_params(**gs.best_params_) | |
model.fit(X_train,y_train) | |
y_train_pred=model.predict(X_train) | |
y_test_pred=model.predict(X_test) | |
train_model_score=r2_score(y_train,y_train_pred) | |
test_model_score=r2_score(y_test,y_test_pred) | |
report[list(models.keys())[i]]=test_model_score | |
return report | |
except Exception as e: | |
raise CustomException(e, sys) | |
def load_object(file_path): | |
try: | |
with open(file_path, "rb") as file_obj: | |
return dill.load(file_obj) | |
except Exception as e: | |
raise CustomException(e, sys) | |