diffusion / generate.py
adamelliotfields's picture
Add app
4d6f2bc verified
raw
history blame
6.93 kB
import re
from datetime import datetime
from itertools import product
from os import environ
from warnings import filterwarnings
import spaces
import torch
from compel import Compel
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
)
from diffusers.models import AutoencoderTiny
# some models use the deprecated CLIPFeatureExtractor class
# should use CLIPImageProcessor instead
filterwarnings("ignore", category=FutureWarning, module="transformers")
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.cpu = torch.device("cpu")
cls._instance.gpu = torch.device("cuda")
cls._instance.model_cpu = None
cls._instance.model_gpu = None
return cls._instance
def load(self, model, scheduler, karras):
SPACES_ZERO_GPU = (
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
or environ.get("SPACES_ZERO_GPU", "") == "1"
)
model_lower = model.lower()
scheduler_map = {
"DEIS 2M": DEISMultistepScheduler,
"DPM++ 2M": DPMSolverMultistepScheduler,
"DPM2 a": KDPM2AncestralDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
"LMS": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
if self.model_gpu is not None:
same_model = self.model_gpu.config._name_or_path.lower() == model_lower
same_scheduler = isinstance(self.model_gpu.scheduler, scheduler_map[scheduler])
same_karras = (
not hasattr(self.model_gpu.scheduler.config, "use_karras_sigmas")
or self.model_gpu.scheduler.config.use_karras_sigmas == karras
)
if same_model and same_scheduler and same_karras:
return self.model_gpu
if karras:
scheduler_kwargs["use_karras_sigmas"] = True
if scheduler == "PNDM":
del scheduler_kwargs["use_karras_sigmas"]
variant = (
None
if model_lower in ["sg161222/realistic_vision_v5.1_novae", "prompthero/openjourney-v4"]
else "fp16"
)
pipeline_kwargs = {
"pretrained_model_name_or_path": model_lower,
"requires_safety_checker": False,
"safety_checker": None,
"scheduler": scheduler_map[scheduler](**scheduler_kwargs),
"torch_dtype": torch.float16,
"variant": variant,
"use_safetensors": True,
"vae": AutoencoderTiny.from_pretrained(
"madebyollin/taesd",
torch_dtype=torch.float16,
use_safetensors=True,
),
}
scheduler_cls = scheduler_map[scheduler]
pipeline_kwargs["scheduler"] = scheduler_cls(**scheduler_kwargs)
# in ZeroGPU we always start fresh
if SPACES_ZERO_GPU:
self.model_gpu = None
self.model_cpu = None
if self.model_gpu is not None:
model_gpu_name = self.model_gpu.config._name_or_path
self.model_cpu = self.model_gpu.to(self.cpu, silence_dtype_warnings=True)
self.model_gpu = None
torch.cuda.empty_cache()
print(f"Moved {model_gpu_name} to CPU ✓")
self.model_gpu = StableDiffusionPipeline.from_pretrained(**pipeline_kwargs).to(self.gpu)
print(f"Moved {model_lower} to GPU ✓")
return self.model_gpu
# prepare prompts for Compel
def join_prompt(prompt: str) -> str:
lines = prompt.strip().splitlines()
return '("' + '", "'.join(lines) + '").and()' if len(lines) > 1 else prompt
# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
joined_prompt = join_prompt(prompt)
arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)
if not arrays:
return [joined_prompt]
tokens = [item.split(",") for item in arrays]
combinations = list(product(*tokens))
prompts = []
for combo in combinations:
current_prompt = joined_prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
@spaces.GPU(duration=30)
def generate(
positive_prompt,
negative_prompt="",
seed=None,
model="lykon/dreamshaper-8",
scheduler="DEIS 2M",
aspect_ratio="1:1",
guidance_scale=7,
inference_steps=30,
karras=True,
num_images=1,
increment_seed=True,
):
# image dimensions
aspect_ratios = {
"16:9": (640, 360),
"4:3": (576, 432),
"1:1": (512, 512),
"3:4": (432, 576),
"9:16": (360, 640),
}
width, height = aspect_ratios[aspect_ratio]
with torch.inference_mode():
loader = Loader()
pipe = loader.load(model, scheduler, karras)
# prompt embeds
compel = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
device=pipe.device.type,
dtype_for_device_getter=lambda _: torch.float16,
)
neg_prompt = join_prompt(negative_prompt)
neg_embeds = compel(neg_prompt)
if seed is None:
seed = int(datetime.now().timestamp())
current_seed = seed
images = []
for i in range(num_images):
generator = torch.Generator(device=pipe.device.type).manual_seed(current_seed)
all_positive_prompts = parse_prompt(positive_prompt)
prompt_index = i % len(all_positive_prompts)
pos_prompt = all_positive_prompts[prompt_index]
pos_embeds = compel(pos_prompt)
pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
[pos_embeds, neg_embeds]
)
result = pipe(
width=width,
height=height,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=generator,
)
images.append((result.images[0], str(current_seed)))
if increment_seed:
current_seed += 1
return images