Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,438 Bytes
4d6f2bc 48c31e7 98afd85 61ad3d2 4d6f2bc 9edebae aafe7f2 05246f1 9769856 05246f1 4d6f2bc 9769856 0acf94b 9769856 0acf94b 9769856 aafe7f2 9769856 aafe7f2 b7fd57e 9769856 98afd85 9769856 98afd85 9769856 98afd85 9769856 7e19bd9 9769856 98afd85 7e19bd9 069fc81 9769856 98afd85 9769856 98afd85 9769856 98afd85 9769856 52bf5e0 9769856 52bf5e0 9769856 52bf5e0 9769856 52bf5e0 9769856 52bf5e0 9769856 1e250ff 9769856 1e250ff 9769856 61ad3d2 c348e53 9769856 c348e53 9769856 039ff6d 9769856 c348e53 9769856 4d6f2bc 48c31e7 9769856 48c31e7 4d6f2bc 9769856 4d6f2bc 9769856 48c31e7 9edebae 9769856 4d6f2bc 9769856 9edebae 9769856 9edebae 9769856 98afd85 9769856 9edebae 9769856 4d6f2bc 9769856 60849d7 9769856 52bf5e0 9769856 9e8b99d 9769856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import ControlNetModel
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import timer
class Loader:
"""
A lazy-loading resource manager for Stable Diffusion pipelines. Lifecycles are managed by
comparing the current state with desired. Can be used as a singleton when created by the
`get_loader()` helper.
Usage:
loader = get_loader(singleton=True)
loader.load(
pipeline_id="controlnet_txt2img",
ip_adapter_model="full-face",
model="XpucT/Reliberate",
scheduler="UniPC",
controlnet_annotator="canny",
deepcache_interval=2,
scale=2,
use_karras=True
)
"""
def __init__(self):
self.model = ""
self.pipeline = None
self.upscaler = None
self.controlnet = None
self.annotator = "" # controlnet annotator (canny)
self.ip_adapter = "" # ip-adapter kind (full-face or plus)
self.log = Logger("Loader")
def should_unload_upscaler(self, scale=1):
return self.upscaler is not None and self.upscaler.scale != scale
def should_unload_deepcache(self, cache_interval=1):
has_deepcache = hasattr(self.pipeline, "deepcache")
if has_deepcache and cache_interval == 1:
return True
if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != cache_interval:
# Unload if interval is different so it can be reloaded
return True
return False
def should_unload_ip_adapter(self, ip_adapter_model=""):
if not self.ip_adapter:
return False
if not ip_adapter_model:
return True
if self.ip_adapter != ip_adapter_model:
# Unload if model is different so it can be reloaded
return True
return False
def should_unload_controlnet(self, pipeline_id="", annotator=""):
if self.controlnet is None:
return False
if self.annotator != annotator:
return True
if not pipeline_id.startswith("controlnet_"):
return True
return False
def should_unload_pipeline(self, model=""):
if self.pipeline is None:
return False
if self.model != model:
return True
return False
# Copied from https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def unload_ip_adapter(self):
# Remove the image encoder if text-to-image
if isinstance(self.pipeline, Config.PIPELINES["txt2img"]):
self.pipeline.image_encoder = None
self.pipeline.register_to_config(image_encoder=[None, None])
# Remove hidden projection layer added by IP-Adapter
self.pipeline.unet.encoder_hid_proj = None
self.pipeline.unet.config.encoder_hid_dim_type = None
# Remove the feature extractor
self.pipeline.feature_extractor = None
self.pipeline.register_to_config(feature_extractor=[None, None])
# Replace the custom attention processors with defaults
attn_procs = {}
for name, value in self.pipeline.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipeline.unet.set_attn_processor(attn_procs)
self.ip_adapter = ""
def unload_all(
self,
pipeline_id="",
ip_adapter_model="",
model="",
controlnet_annotator="",
deepcache_interval=1,
scale=1,
):
if self.should_unload_deepcache(deepcache_interval): # remove deepcache first
self.log.info("Disabling DeepCache")
self.pipeline.deepcache.disable()
delattr(self.pipeline, "deepcache")
if self.should_unload_ip_adapter(ip_adapter_model):
self.log.info("Unloading IP-Adapter")
self.unload_ip_adapter()
if self.should_unload_controlnet(pipeline_id, controlnet_annotator):
self.log.info("Unloading ControlNet")
self.controlnet = None
self.annotator = ""
if self.should_unload_upscaler(scale):
self.log.info("Unloading upscaler")
self.upscaler = None
if self.should_unload_pipeline(model):
self.log.info("Unloading pipeline")
self.pipeline = None
self.model = ""
def should_load_upscaler(self, scale=1):
return self.upscaler is None and scale > 1
def should_load_deepcache(self, cache_interval=1):
has_deepcache = hasattr(self.pipeline, "deepcache")
if not has_deepcache and cache_interval > 1:
return True
return False
def should_load_controlnet(self, pipeline_id=""):
return self.controlnet is None and pipeline_id.startswith("controlnet_")
def should_load_ip_adapter(self, ip_adapter_model=""):
has_ip_adapter = (
hasattr(self.pipeline.unet, "encoder_hid_proj")
and self.pipeline.unet.config.encoder_hid_dim_type == "ip_image_proj"
)
return not has_ip_adapter and ip_adapter_model != ""
def should_load_scheduler(self, cls, use_karras=False):
has_karras = hasattr(self.pipeline.scheduler.config, "use_karras_sigmas")
if not isinstance(self.pipeline.scheduler, cls):
return True
if has_karras and self.pipeline.scheduler.config.use_karras_sigmas != use_karras:
return True
return False
def should_load_pipeline(self, pipeline_id=""):
if self.pipeline is None:
return True
if not isinstance(self.pipeline, Config.PIPELINES[pipeline_id]):
return True
return False
def load_upscaler(self, scale=1):
with timer(f"Loading {scale}x upscaler", logger=self.log.info):
self.upscaler = RealESRGAN(scale, device=self.pipeline.device)
self.upscaler.load_weights()
def load_deepcache(self, cache_interval=1):
self.log.info(f"Enabling DeepCache interval {cache_interval}")
self.pipeline.deepcache = DeepCacheSDHelper(self.pipeline)
self.pipeline.deepcache.set_params(cache_interval=cache_interval)
self.pipeline.deepcache.enable()
def load_controlnet(self, controlnet_annotator):
with timer("Loading ControlNet", logger=self.log.info):
self.controlnet = ControlNetModel.from_pretrained(
Config.ANNOTATORS[controlnet_annotator],
variant="fp16",
torch_dtype=torch.float16,
)
self.annotator = controlnet_annotator
def load_ip_adapter(self, ip_adapter_model=""):
with timer("Loading IP-Adapter", logger=self.log.info):
self.pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter_model}_sd15.safetensors",
)
self.pipeline.set_ip_adapter_scale(0.5) # 50% works the best
self.ip_adapter = ip_adapter_model
def load_scheduler(self, cls, use_karras=False, **kwargs):
self.log.info(f"Loading {cls.__name__}{' with Karras' if use_karras else ''}")
self.pipeline.scheduler = cls(**kwargs)
def load_pipeline(
self,
pipeline_id,
model,
**kwargs,
):
Pipeline = Config.PIPELINES[pipeline_id]
# Load from scratch
if self.pipeline is None:
with timer(f"Loading {model} ({pipeline_id})", logger=self.log.info):
if self.controlnet is not None:
kwargs["controlnet"] = self.controlnet
if model in Config.SINGLE_FILE_MODELS:
checkpoint = Config.HF_REPOS[model][0]
self.pipeline = Pipeline.from_single_file(
f"https://huggingface.co/{model}/{checkpoint}",
**kwargs,
).to("cuda")
else:
self.pipeline = Pipeline.from_pretrained(model, **kwargs).to("cuda")
# Change to a different one
else:
with timer(f"Changing pipeline to {pipeline_id}", logger=self.log.info):
kwargs = {}
if self.controlnet is not None:
kwargs["controlnet"] = self.controlnet
self.pipeline = Pipeline.from_pipe(
self.pipeline,
**kwargs,
).to("cuda")
# Update model and disable terminal progress bars
self.model = model
self.pipeline.set_progress_bar_config(disable=True)
def load(
self,
pipeline_id,
ip_adapter_model,
model,
scheduler,
controlnet_annotator,
deepcache_interval,
scale,
use_karras,
):
Scheduler = Config.SCHEDULERS[scheduler]
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
if scheduler not in ["Euler a"]:
scheduler_kwargs["use_karras_sigmas"] = use_karras
pipeline_kwargs = {
"torch_dtype": torch.float16, # defaults to fp32
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Scheduler(**scheduler_kwargs),
}
# Single-file models don't need a variant
if model not in Config.SINGLE_FILE_MODELS:
pipeline_kwargs["variant"] = "fp16"
else:
pipeline_kwargs["variant"] = None
# Prepare state for loading checks
self.unload_all(
pipeline_id,
ip_adapter_model,
model,
controlnet_annotator,
deepcache_interval,
scale,
)
# Load controlnet model before pipeline
if self.should_load_controlnet(pipeline_id):
self.load_controlnet(controlnet_annotator)
if self.should_load_pipeline(pipeline_id):
self.load_pipeline(pipeline_id, model, **pipeline_kwargs)
if self.should_load_scheduler(Scheduler, use_karras):
self.load_scheduler(Scheduler, use_karras, **scheduler_kwargs)
if self.should_load_deepcache(deepcache_interval):
self.load_deepcache(deepcache_interval)
if self.should_load_ip_adapter(ip_adapter_model):
self.load_ip_adapter(ip_adapter_model)
if self.should_load_upscaler(scale):
self.load_upscaler(scale)
# Get a singleton or a new instance of the Loader
def get_loader(singleton=False):
if not singleton:
return Loader()
else:
if not hasattr(get_loader, "_instance"):
get_loader._instance = Loader()
assert isinstance(get_loader._instance, Loader)
return get_loader._instance
|