Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,474 +1,389 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
import subprocess
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
import
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
# Generate GUI code for app.py if requested
|
107 |
-
if "create a gui" in summary.lower():
|
108 |
-
gui_code = generate_code(
|
109 |
-
"Create a simple GUI for this application", selected_model)
|
110 |
-
with open(app_file, "a") as f:
|
111 |
-
f.write(gui_code)
|
112 |
-
|
113 |
-
# Run the default build process
|
114 |
-
build_command = "pip install -r requirements.txt && python app.py"
|
115 |
-
try:
|
116 |
-
result = subprocess.run(
|
117 |
-
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
118 |
-
st.write(f"Build Output:\n{result.stdout}")
|
119 |
-
if result.stderr:
|
120 |
-
st.error(f"Build Errors:\n{result.stderr}")
|
121 |
-
except Exception as e:
|
122 |
-
st.error(f"Build Error: {e}")
|
123 |
-
|
124 |
-
return summary, next_step
|
125 |
-
|
126 |
-
def get_built_space_files() -> Dict[str, str]:
|
127 |
-
# Replace with your logic to gather the files you want to deploy
|
128 |
-
return {
|
129 |
-
"app.py": "# Your Streamlit app code here",
|
130 |
-
"requirements.txt": "streamlit\ntransformers"
|
131 |
-
# Add other files as needed
|
132 |
-
}
|
133 |
-
|
134 |
-
def save_agent_to_file(agent: AIAgent):
|
135 |
-
"""Saves the agent's prompt to a file."""
|
136 |
-
if not os.path.exists(AGENT_DIRECTORY):
|
137 |
-
os.makedirs(AGENT_DIRECTORY)
|
138 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
139 |
-
with open(file_path, "w") as file:
|
140 |
-
file.write(agent.create_agent_prompt())
|
141 |
-
st.session_state.available_agents.append(agent.name)
|
142 |
-
|
143 |
-
def load_agent_prompt(agent_name: str) -> str:
|
144 |
-
"""Loads an agent prompt from a file."""
|
145 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
146 |
-
if os.path.exists(file_path):
|
147 |
-
with open(file_path, "r") as file:
|
148 |
-
agent_prompt = file.read()
|
149 |
-
return agent_prompt
|
150 |
-
else:
|
151 |
-
return None
|
152 |
-
|
153 |
-
def create_agent_from_text(name: str, text: str) -> str:
|
154 |
-
skills = text.split("\n")
|
155 |
-
agent = AIAgent(name, "AI agent created from text input.", skills)
|
156 |
-
save_agent_to_file(agent)
|
157 |
-
return agent.create_agent_prompt()
|
158 |
-
|
159 |
-
def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
|
160 |
-
agent_prompt = load_agent_prompt(agent_name)
|
161 |
-
if agent_prompt is None:
|
162 |
-
return f"Agent {agent_name} not found."
|
163 |
-
|
164 |
-
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
|
165 |
try:
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
except Exception as e:
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
try:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
206 |
-
return summary[0]['summary_text']
|
207 |
-
|
208 |
-
def sentiment_analysis(text: str) -> str:
|
209 |
-
analyzer = pipeline("sentiment-analysis")
|
210 |
-
result = analyzer(text)
|
211 |
-
return result[0]['label']
|
212 |
-
|
213 |
-
def translate_code(code: str, source_language: str, target_language: str) -> str:
|
214 |
-
# Use a Hugging Face translation model instead of OpenAI
|
215 |
-
# Example: English to Spanish
|
216 |
-
translator = pipeline(
|
217 |
-
"translation", model="bartowski/Codestral-22B-v0.1-GGUF")
|
218 |
-
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
219 |
-
return translated_code
|
220 |
-
|
221 |
-
def generate_code(code_idea: str, model_name: str) -> str:
|
222 |
-
"""Generates code using the selected model."""
|
223 |
-
try:
|
224 |
-
generator = pipeline('text-generation', model=model_name)
|
225 |
-
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
226 |
-
return generated_code
|
227 |
except Exception as e:
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
else
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
"
|
265 |
-
"
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
agent_name
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
#
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
# Display Chat History
|
415 |
-
st.subheader("Chat History")
|
416 |
-
for user_input, response in st.session_state.chat_history:
|
417 |
-
st.write(f"User: {user_input}")
|
418 |
-
st.write(f"CodeCraft: {response}")
|
419 |
-
|
420 |
-
# Display Terminal History
|
421 |
-
st.subheader("Terminal History")
|
422 |
-
for command, output in st.session_state.terminal_history:
|
423 |
-
st.write(f"Command: {command}")
|
424 |
-
st.code(output, language="bash")
|
425 |
-
|
426 |
-
# Display Projects and Files
|
427 |
-
st.subheader("Workspace Projects")
|
428 |
-
for project, details in st.session_state.workspace_projects.items():
|
429 |
-
st.write(f"Project: {project}")
|
430 |
-
for file in details['files']:
|
431 |
-
st.write(f" - {file}")
|
432 |
-
|
433 |
-
# Chat with AI Agents
|
434 |
-
st.subheader("Chat with AI Agents")
|
435 |
-
selected_agent = st.selectbox(
|
436 |
-
"Select an AI agent", st.session_state.available_agents)
|
437 |
-
agent_chat_input = st.text_area("Enter your message for the agent:")
|
438 |
-
if st.button("Send to Agent"):
|
439 |
-
agent_chat_response = chat_interface_with_agent(
|
440 |
-
agent_chat_input, selected_agent)
|
441 |
-
st.session_state.chat_history.append(
|
442 |
-
(agent_chat_input, agent_chat_response))
|
443 |
-
st.write(f"{selected_agent}: {agent_chat_response}")
|
444 |
-
|
445 |
-
# Code Generation
|
446 |
-
st.subheader("Code Generation")
|
447 |
-
code_idea = st.text_input("Enter your code idea:")
|
448 |
-
|
449 |
-
# Model Selection Menu
|
450 |
-
selected_model = st.selectbox(
|
451 |
-
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
452 |
-
|
453 |
-
if st.button("Generate Code"):
|
454 |
-
generated_code = generate_code(code_idea, selected_model)
|
455 |
-
st.code(generated_code, language="python")
|
456 |
-
|
457 |
-
# Automate Build Process
|
458 |
-
st.subheader("Automate Build Process")
|
459 |
-
if st.button("Automate"):
|
460 |
-
# Load the agent without skills for now
|
461 |
-
agent = AIAgent(selected_agent, "", [])
|
462 |
-
summary, next_step = agent.autonomous_build(
|
463 |
-
st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
|
464 |
-
st.write("Autonomous Build Summary:")
|
465 |
-
st.write(summary)
|
466 |
-
st.write("Next Step:")
|
467 |
-
st.write(next_step)
|
468 |
-
|
469 |
-
# If everything went well, proceed to deploy the Space
|
470 |
-
if agent._hf_api and agent.has_valid_hf_token():
|
471 |
-
agent.deploy_built_space_to_hf()
|
472 |
-
# Use the hf_token to interact with the Hugging Face API
|
473 |
-
api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
|
474 |
-
create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())
|
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
+
import random
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
import gradio as gr
|
6 |
+
from safe_search import safe_search
|
7 |
+
from i_search import google
|
8 |
+
from i_search import i_search as i_s
|
9 |
+
from agent import (
|
10 |
+
ACTION_PROMPT,
|
11 |
+
ADD_PROMPT,
|
12 |
+
COMPRESS_HISTORY_PROMPT,
|
13 |
+
LOG_PROMPT,
|
14 |
+
LOG_RESPONSE,
|
15 |
+
MODIFY_PROMPT,
|
16 |
+
PREFIX,
|
17 |
+
SEARCH_QUERY,
|
18 |
+
READ_PROMPT,
|
19 |
+
TASK_PROMPT,
|
20 |
+
UNDERSTAND_TEST_RESULTS_PROMPT,
|
21 |
+
)
|
22 |
+
from utils import parse_action, parse_file_content, read_python_module_structure
|
23 |
+
from datetime import datetime
|
24 |
+
now = datetime.now()
|
25 |
+
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
26 |
+
|
27 |
+
client = InferenceClient(
|
28 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
29 |
+
)
|
30 |
+
|
31 |
+
############################################
|
32 |
+
|
33 |
+
|
34 |
+
VERBOSE = True
|
35 |
+
MAX_HISTORY = 100
|
36 |
+
#MODEL = "gpt-3.5-turbo" # "gpt-4"
|
37 |
+
|
38 |
+
|
39 |
+
def format_prompt(message, history):
|
40 |
+
prompt = "<s>"
|
41 |
+
for user_prompt, bot_response in history:
|
42 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
43 |
+
prompt += f" {bot_response}</s> "
|
44 |
+
prompt += f"[INST] {message} [/INST]"
|
45 |
+
return prompt
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
def run_gpt(
|
50 |
+
prompt_template,
|
51 |
+
stop_tokens,
|
52 |
+
max_tokens,
|
53 |
+
purpose,
|
54 |
+
**prompt_kwargs,
|
55 |
+
):
|
56 |
+
seed = random.randint(1,1111111111111111)
|
57 |
+
print (seed)
|
58 |
+
generate_kwargs = dict(
|
59 |
+
temperature=1.0,
|
60 |
+
max_new_tokens=2096,
|
61 |
+
top_p=0.99,
|
62 |
+
repetition_penalty=1.0,
|
63 |
+
do_sample=True,
|
64 |
+
seed=seed,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
content = PREFIX.format(
|
69 |
+
date_time_str=date_time_str,
|
70 |
+
purpose=purpose,
|
71 |
+
safe_search=safe_search,
|
72 |
+
) + prompt_template.format(**prompt_kwargs)
|
73 |
+
if VERBOSE:
|
74 |
+
print(LOG_PROMPT.format(content))
|
75 |
+
|
76 |
+
|
77 |
+
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
78 |
+
#formatted_prompt = format_prompt(f'{content}', history)
|
79 |
+
|
80 |
+
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
81 |
+
resp = ""
|
82 |
+
for response in stream:
|
83 |
+
resp += response.token.text
|
84 |
+
|
85 |
+
if VERBOSE:
|
86 |
+
print(LOG_RESPONSE.format(resp))
|
87 |
+
return resp
|
88 |
+
|
89 |
+
|
90 |
+
def compress_history(purpose, task, history, directory):
|
91 |
+
resp = run_gpt(
|
92 |
+
COMPRESS_HISTORY_PROMPT,
|
93 |
+
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
94 |
+
max_tokens=512,
|
95 |
+
purpose=purpose,
|
96 |
+
task=task,
|
97 |
+
history=history,
|
98 |
+
)
|
99 |
+
history = "observation: {}\n".format(resp)
|
100 |
+
return history
|
101 |
+
|
102 |
+
def call_search(purpose, task, history, directory, action_input):
|
103 |
+
print("CALLING SEARCH")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
try:
|
105 |
+
|
106 |
+
if "http" in action_input:
|
107 |
+
if "<" in action_input:
|
108 |
+
action_input = action_input.strip("<")
|
109 |
+
if ">" in action_input:
|
110 |
+
action_input = action_input.strip(">")
|
111 |
+
|
112 |
+
response = i_s(action_input)
|
113 |
+
#response = google(search_return)
|
114 |
+
print(response)
|
115 |
+
history += "observation: search result is: {}\n".format(response)
|
116 |
+
else:
|
117 |
+
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
118 |
except Exception as e:
|
119 |
+
history += "observation: {}'\n".format(e)
|
120 |
+
return "MAIN", None, history, task
|
121 |
+
|
122 |
+
def call_main(purpose, task, history, directory, action_input):
|
123 |
+
resp = run_gpt(
|
124 |
+
ACTION_PROMPT,
|
125 |
+
stop_tokens=["observation:", "task:", "action:","thought:"],
|
126 |
+
max_tokens=2096,
|
127 |
+
purpose=purpose,
|
128 |
+
task=task,
|
129 |
+
history=history,
|
130 |
+
)
|
131 |
+
lines = resp.strip().strip("\n").split("\n")
|
132 |
+
for line in lines:
|
133 |
+
if line == "":
|
134 |
+
continue
|
135 |
+
if line.startswith("thought: "):
|
136 |
+
history += "{}\n".format(line)
|
137 |
+
elif line.startswith("action: "):
|
138 |
+
|
139 |
+
action_name, action_input = parse_action(line)
|
140 |
+
print (f'ACTION_NAME :: {action_name}')
|
141 |
+
print (f'ACTION_INPUT :: {action_input}')
|
142 |
+
|
143 |
+
history += "{}\n".format(line)
|
144 |
+
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
145 |
+
task = "END"
|
146 |
+
return action_name, action_input, history, task
|
147 |
+
else:
|
148 |
+
return action_name, action_input, history, task
|
149 |
+
else:
|
150 |
+
history += "{}\n".format(line)
|
151 |
+
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
152 |
+
|
153 |
+
#return action_name, action_input, history, task
|
154 |
+
#assert False, "unknown action: {}".format(line)
|
155 |
+
return "MAIN", None, history, task
|
156 |
+
|
157 |
+
|
158 |
+
def call_set_task(purpose, task, history, directory, action_input):
|
159 |
+
task = run_gpt(
|
160 |
+
TASK_PROMPT,
|
161 |
+
stop_tokens=[],
|
162 |
+
max_tokens=64,
|
163 |
+
purpose=purpose,
|
164 |
+
task=task,
|
165 |
+
history=history,
|
166 |
+
).strip("\n")
|
167 |
+
history += "observation: task has been updated to: {}\n".format(task)
|
168 |
+
return "MAIN", None, history, task
|
169 |
+
|
170 |
+
def end_fn(purpose, task, history, directory, action_input):
|
171 |
+
task = "END"
|
172 |
+
return "COMPLETE", "COMPLETE", history, task
|
173 |
+
|
174 |
+
NAME_TO_FUNC = {
|
175 |
+
"MAIN": call_main,
|
176 |
+
"UPDATE-TASK": call_set_task,
|
177 |
+
"SEARCH": call_search,
|
178 |
+
"COMPLETE": end_fn,
|
179 |
+
|
180 |
+
}
|
181 |
+
|
182 |
+
def run_action(purpose, task, history, directory, action_name, action_input):
|
183 |
+
print(f'action_name::{action_name}')
|
184 |
try:
|
185 |
+
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
186 |
+
action_name="COMPLETE"
|
187 |
+
task="END"
|
188 |
+
return action_name, "COMPLETE", history, task
|
189 |
+
|
190 |
+
# compress the history when it is long
|
191 |
+
if len(history.split("\n")) > MAX_HISTORY:
|
192 |
+
if VERBOSE:
|
193 |
+
print("COMPRESSING HISTORY")
|
194 |
+
history = compress_history(purpose, task, history, directory)
|
195 |
+
if not action_name in NAME_TO_FUNC:
|
196 |
+
action_name="MAIN"
|
197 |
+
if action_name == "" or action_name == None:
|
198 |
+
action_name="MAIN"
|
199 |
+
assert action_name in NAME_TO_FUNC
|
200 |
+
|
201 |
+
print("RUN: ", action_name, action_input)
|
202 |
+
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
except Exception as e:
|
204 |
+
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
205 |
+
|
206 |
+
return "MAIN", None, history, task
|
207 |
+
|
208 |
+
def run(purpose,history):
|
209 |
+
|
210 |
+
#print(purpose)
|
211 |
+
#print(hist)
|
212 |
+
task=None
|
213 |
+
directory="./"
|
214 |
+
if history:
|
215 |
+
history=str(history).strip("[]")
|
216 |
+
if not history:
|
217 |
+
history = ""
|
218 |
+
|
219 |
+
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
220 |
+
action_input = None
|
221 |
+
while True:
|
222 |
+
print("")
|
223 |
+
print("")
|
224 |
+
print("---")
|
225 |
+
print("purpose:", purpose)
|
226 |
+
print("task:", task)
|
227 |
+
print("---")
|
228 |
+
print(history)
|
229 |
+
print("---")
|
230 |
+
|
231 |
+
action_name, action_input, history, task = run_action(
|
232 |
+
purpose,
|
233 |
+
task,
|
234 |
+
history,
|
235 |
+
directory,
|
236 |
+
action_name,
|
237 |
+
action_input,
|
238 |
+
)
|
239 |
+
yield (history)
|
240 |
+
#yield ("",[(purpose,history)])
|
241 |
+
if task == "END":
|
242 |
+
return (history)
|
243 |
+
#return ("", [(purpose,history)])
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
################################################
|
248 |
+
|
249 |
+
def format_prompt(message, history):
|
250 |
+
prompt = "<s>"
|
251 |
+
for user_prompt, bot_response in history:
|
252 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
253 |
+
prompt += f" {bot_response}</s> "
|
254 |
+
prompt += f"[INST] {message} [/INST]"
|
255 |
+
return prompt
|
256 |
+
agents =[
|
257 |
+
"WEB_DEV",
|
258 |
+
"AI_SYSTEM_PROMPT",
|
259 |
+
"PYTHON_CODE_DEV"
|
260 |
+
]
|
261 |
+
def generate(
|
262 |
+
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
263 |
+
):
|
264 |
+
seed = random.randint(1,1111111111111111)
|
265 |
+
|
266 |
+
agent=prompts.WEB_DEV
|
267 |
+
if agent_name == "WEB_DEV":
|
268 |
+
agent = prompts.WEB_DEV
|
269 |
+
if agent_name == "AI_SYSTEM_PROMPT":
|
270 |
+
agent = prompts.AI_SYSTEM_PROMPT
|
271 |
+
if agent_name == "PYTHON_CODE_DEV":
|
272 |
+
agent = prompts.PYTHON_CODE_DEV
|
273 |
+
system_prompt=agent
|
274 |
+
temperature = float(temperature)
|
275 |
+
if temperature < 1e-2:
|
276 |
+
temperature = 1e-2
|
277 |
+
top_p = float(top_p)
|
278 |
+
|
279 |
+
generate_kwargs = dict(
|
280 |
+
temperature=temperature,
|
281 |
+
max_new_tokens=max_new_tokens,
|
282 |
+
top_p=top_p,
|
283 |
+
repetition_penalty=repetition_penalty,
|
284 |
+
do_sample=True,
|
285 |
+
seed=seed,
|
286 |
+
)
|
287 |
+
|
288 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
289 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
290 |
+
output = ""
|
291 |
+
|
292 |
+
for response in stream:
|
293 |
+
output += response.token.text
|
294 |
+
yield output
|
295 |
+
return output
|
296 |
+
|
297 |
+
|
298 |
+
additional_inputs=[
|
299 |
+
gr.Dropdown(
|
300 |
+
label="Agents",
|
301 |
+
choices=[s for s in agents],
|
302 |
+
value=agents[0],
|
303 |
+
interactive=True,
|
304 |
+
),
|
305 |
+
gr.Textbox(
|
306 |
+
label="System Prompt",
|
307 |
+
max_lines=1,
|
308 |
+
interactive=True,
|
309 |
+
),
|
310 |
+
gr.Slider(
|
311 |
+
label="Temperature",
|
312 |
+
value=0.9,
|
313 |
+
minimum=0.0,
|
314 |
+
maximum=1.0,
|
315 |
+
step=0.05,
|
316 |
+
interactive=True,
|
317 |
+
info="Higher values produce more diverse outputs",
|
318 |
+
),
|
319 |
+
|
320 |
+
gr.Slider(
|
321 |
+
label="Max new tokens",
|
322 |
+
value=1048*10,
|
323 |
+
minimum=0,
|
324 |
+
maximum=1048*10,
|
325 |
+
step=64,
|
326 |
+
interactive=True,
|
327 |
+
info="The maximum numbers of new tokens",
|
328 |
+
),
|
329 |
+
gr.Slider(
|
330 |
+
label="Top-p (nucleus sampling)",
|
331 |
+
value=0.90,
|
332 |
+
minimum=0.0,
|
333 |
+
maximum=1,
|
334 |
+
step=0.05,
|
335 |
+
interactive=True,
|
336 |
+
info="Higher values sample more low-probability tokens",
|
337 |
+
),
|
338 |
+
gr.Slider(
|
339 |
+
label="Repetition penalty",
|
340 |
+
value=1.2,
|
341 |
+
minimum=1.0,
|
342 |
+
maximum=2.0,
|
343 |
+
step=0.05,
|
344 |
+
interactive=True,
|
345 |
+
info="Penalize repeated tokens",
|
346 |
+
),
|
347 |
+
|
348 |
+
|
349 |
+
]
|
350 |
+
|
351 |
+
examples=[["What are the biggest news stories today?", None, None, None, None, None, ],
|
352 |
+
["When is the next full moon?", None, None, None, None, None, ],
|
353 |
+
["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
|
354 |
+
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
|
355 |
+
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
|
356 |
+
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
|
357 |
+
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
|
358 |
+
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
|
359 |
+
]
|
360 |
+
|
361 |
+
'''
|
362 |
+
gr.ChatInterface(
|
363 |
+
fn=run,
|
364 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
365 |
+
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
366 |
+
examples=examples,
|
367 |
+
concurrency_limit=20,
|
368 |
+
with gr.Blocks() as ifacea:
|
369 |
+
gr.HTML("""TEST""")
|
370 |
+
ifacea.launch()
|
371 |
+
).launch()
|
372 |
+
with gr.Blocks() as iface:
|
373 |
+
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
374 |
+
chatbot=gr.Chatbot()
|
375 |
+
msg = gr.Textbox()
|
376 |
+
with gr.Row():
|
377 |
+
submit_b = gr.Button()
|
378 |
+
clear = gr.ClearButton([msg, chatbot])
|
379 |
+
submit_b.click(run, [msg,chatbot],[msg,chatbot])
|
380 |
+
msg.submit(run, [msg, chatbot], [msg, chatbot])
|
381 |
+
iface.launch()
|
382 |
+
'''
|
383 |
+
gr.ChatInterface(
|
384 |
+
fn=run,
|
385 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
386 |
+
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
387 |
+
examples=examples,
|
388 |
+
concurrency_limit=20,
|
389 |
+
).launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|