Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 1,367 Bytes
			
			| 44b0d60 d617eb9 44b0d60 897dd01 d617eb9 897dd01 d617eb9 897dd01 44b0d60 897dd01 44b0d60 d617eb9 44b0d60 d617eb9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import transformers
from transformers import pipeline
def generate(idea):
    """Generates code based on a given idea using the bigscience/T0_3B model.
    Args:
        idea: The idea for the code to be generated.
        Returns:
        The generated code as a string.
    """
    # Load the code generation model
    model_name = "bigscience/T0_3B"  # Use a model that works for code generation
    model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
    # Generate the code
    # Generate the code
    input_text = f"""
    # Idea: {idea}
    # Code:
    """
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    output_sequences = model.generate(
        input_ids=input_ids,
        max_length=1024,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        early_stopping=True,
        temperature=0.7,  # Adjust temperature for creativity
        top_k=50,  # Adjust top_k for diversity
    )
    generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
    # Remove the prompt and formatting
    generated_code = generated_code.split("\n# Code:")[1].strip()
    return generated_code
# Example usage
idea = "Write a Python function to calculate the factorial of a number"
code = generate(idea)
print(code) | 
