Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,11 @@
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
-
os.environ['CUDA_HOME'] = '/usr/local/cuda'
|
| 4 |
-
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
|
| 5 |
from datetime import datetime
|
| 6 |
|
| 7 |
-
|
| 8 |
-
import spaces
|
| 9 |
-
|
| 10 |
import gradio as gr
|
| 11 |
import numpy as np
|
| 12 |
import torch
|
|
|
|
| 13 |
|
| 14 |
from diffusers.image_processor import VaeImageProcessor
|
| 15 |
from huggingface_hub import snapshot_download
|
|
@@ -115,19 +111,18 @@ pipeline = CatVTONPipeline(
|
|
| 115 |
attn_ckpt_version="mix",
|
| 116 |
weight_dtype=init_weight_dtype(args.mixed_precision),
|
| 117 |
use_tf32=args.allow_tf32,
|
| 118 |
-
device='cuda'
|
| 119 |
-
|
| 120 |
)
|
| 121 |
# AutoMasker
|
| 122 |
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
|
| 123 |
automasker = AutoMasker(
|
| 124 |
densepose_ckpt=os.path.join(repo_path, "DensePose"),
|
| 125 |
schp_ckpt=os.path.join(repo_path, "SCHP"),
|
| 126 |
-
device='cuda',
|
| 127 |
-
|
| 128 |
)
|
| 129 |
|
| 130 |
-
@spaces.GPU(duration=120)
|
| 131 |
def submit_function(
|
| 132 |
person_image,
|
| 133 |
cloth_image,
|
|
@@ -154,8 +149,8 @@ def submit_function(
|
|
| 154 |
|
| 155 |
generator = None
|
| 156 |
if seed != -1:
|
| 157 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 158 |
-
|
| 159 |
|
| 160 |
person_image = Image.open(person_image).convert("RGB")
|
| 161 |
cloth_image = Image.open(cloth_image).convert("RGB")
|
|
|
|
| 1 |
import argparse
|
| 2 |
import os
|
|
|
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
+
device = torch.device('cpu') # Explicitly use CPU if desired
|
| 9 |
|
| 10 |
from diffusers.image_processor import VaeImageProcessor
|
| 11 |
from huggingface_hub import snapshot_download
|
|
|
|
| 111 |
attn_ckpt_version="mix",
|
| 112 |
weight_dtype=init_weight_dtype(args.mixed_precision),
|
| 113 |
use_tf32=args.allow_tf32,
|
| 114 |
+
# device='cuda'
|
| 115 |
+
device='cpu'
|
| 116 |
)
|
| 117 |
# AutoMasker
|
| 118 |
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
|
| 119 |
automasker = AutoMasker(
|
| 120 |
densepose_ckpt=os.path.join(repo_path, "DensePose"),
|
| 121 |
schp_ckpt=os.path.join(repo_path, "SCHP"),
|
| 122 |
+
# device='cuda',
|
| 123 |
+
device='cpu'
|
| 124 |
)
|
| 125 |
|
|
|
|
| 126 |
def submit_function(
|
| 127 |
person_image,
|
| 128 |
cloth_image,
|
|
|
|
| 149 |
|
| 150 |
generator = None
|
| 151 |
if seed != -1:
|
| 152 |
+
# generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 153 |
+
generator = torch.Generator(device='cpu').manual_seed(seed)
|
| 154 |
|
| 155 |
person_image = Image.open(person_image).convert("RGB")
|
| 156 |
cloth_image = Image.open(cloth_image).convert("RGB")
|