Spaces:
Build error
Build error
Afonso B. Sousa
commited on
Added a better title.
Browse files
app.ipynb
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "82baf493-aca3-40ae-8d2f-33adafecb6a9",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"#|default_exp app"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "markdown",
|
| 15 |
+
"id": "5fec5815-2555-4b0d-bd1c-a77a7fbdeda7",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"source": [
|
| 18 |
+
"# Digit parser\n"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 1,
|
| 24 |
+
"id": "2c3da714-bd9c-4b8f-ae28-980f8dea239c",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"#|export\n",
|
| 29 |
+
"import torch\n",
|
| 30 |
+
"import numpy as np\n",
|
| 31 |
+
"import gradio as gr\n",
|
| 32 |
+
"from PIL import Image\n",
|
| 33 |
+
"from pathlib import Path\n",
|
| 34 |
+
"import sys\n",
|
| 35 |
+
"np.set_printoptions(threshold=sys.maxsize)"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 2,
|
| 41 |
+
"id": "5664caad-faca-489c-a8ab-74514aa7d706",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"name": "stdout",
|
| 46 |
+
"output_type": "stream",
|
| 47 |
+
"text": [
|
| 48 |
+
"\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 2ms\u001b[0m\u001b[0m\n"
|
| 49 |
+
]
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"source": [
|
| 53 |
+
"!uv pip install torchmetrics"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"id": "bff78822-ebd1-4f5f-a765-cb0df804a29b",
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [
|
| 62 |
+
{
|
| 63 |
+
"name": "stdout",
|
| 64 |
+
"output_type": "stream",
|
| 65 |
+
"text": [
|
| 66 |
+
"* Running on local URL: http://127.0.0.1:7862\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"To create a public link, set `share=True` in `launch()`.\n",
|
| 69 |
+
"Keyboard interruption in main thread... closing server.\n"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"data": {
|
| 74 |
+
"text/plain": []
|
| 75 |
+
},
|
| 76 |
+
"execution_count": 3,
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"output_type": "execute_result"
|
| 79 |
+
}
|
| 80 |
+
],
|
| 81 |
+
"source": [
|
| 82 |
+
"#|export\n",
|
| 83 |
+
"from lenet import LeNet5\n",
|
| 84 |
+
"# Allowlist the custom class\n",
|
| 85 |
+
"MODEL_PATH = Path(\"models/lenet5-cpu.pt\")\n",
|
| 86 |
+
"model = torch.load(MODEL_PATH, weights_only=False)\n",
|
| 87 |
+
"model.eval()\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"def predict(img):\n",
|
| 90 |
+
" # Create a new image with a white background\n",
|
| 91 |
+
" background = Image.new(\"L\", (28, 28), 255)\n",
|
| 92 |
+
"\n",
|
| 93 |
+
" # Resize the input image\n",
|
| 94 |
+
" img_pil = img[\"composite\"].resize((28, 28))\n",
|
| 95 |
+
"\n",
|
| 96 |
+
" # Paste the resized image onto the white background\n",
|
| 97 |
+
" background.paste(img_pil, (0, 0), img_pil)\n",
|
| 98 |
+
" \n",
|
| 99 |
+
" # Convert to numpy\n",
|
| 100 |
+
" img_array = np.array(background)\n",
|
| 101 |
+
" \n",
|
| 102 |
+
" # Invert colors (MNIST has white digits on black)\n",
|
| 103 |
+
" img_array = 255 - img_array\n",
|
| 104 |
+
"\n",
|
| 105 |
+
" # Create a displayable version of the inverted image (what the model actually sees)\n",
|
| 106 |
+
" inverted_debug = img_array.astype(np.uint8)\n",
|
| 107 |
+
"\n",
|
| 108 |
+
" img_tensor = torch.tensor(img_array, dtype=torch.float32) \n",
|
| 109 |
+
" img_tensor = img_tensor.unsqueeze(0).unsqueeze(0) # Add channel and batch dimensions\n",
|
| 110 |
+
"\n",
|
| 111 |
+
" # Debug: Print the shape and values of the input tensor\n",
|
| 112 |
+
" print(f\"Input tensor shape: {img_tensor.shape}\")\n",
|
| 113 |
+
" print(f\"Input tensor values: {img_tensor}\")\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" with torch.no_grad():\n",
|
| 116 |
+
" output = model(img_tensor)\n",
|
| 117 |
+
" probabilities = torch.nn.functional.softmax(output, dim=1)[0]\n",
|
| 118 |
+
"\n",
|
| 119 |
+
" print(f\"Output shape: {output.shape}\")\n",
|
| 120 |
+
" print(f\"Probabilities shape: {probabilities.shape}\")\n",
|
| 121 |
+
" print(f\"Probabilities: {probabilities}\")\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" # Create dictionary of label: probability for Gradio Label output\n",
|
| 124 |
+
" return {str(i): float(prob) for i, prob in enumerate(probabilities)}, inverted_debug\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"image = gr.Sketchpad(type=\"pil\", sources=(), canvas_size=(280,280), brush=gr.Brush(colors=[\"#000000\"], color_mode=\"fixed\", default_size=20), layers=False, transforms=[])\n",
|
| 127 |
+
"label = gr.Label()\n",
|
| 128 |
+
"processed_image = gr.Image(label=\"What the Model Sees (28x28)\")\n",
|
| 129 |
+
"intf = gr.Interface(title=\"Draw a digit\", description=\"And let me identify it for you...\", fn=predict, inputs=image, outputs=[label, processed_image], clear_btn=None)\n",
|
| 130 |
+
"intf.launch(inline=False, debug=True)"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "markdown",
|
| 135 |
+
"id": "cf53a6ec-86bf-44cb-baaa-011f21f5869e",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"source": [
|
| 138 |
+
"## Export"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": 1,
|
| 144 |
+
"id": "c35ecd80-c0a1-421a-9dd2-04cca2d4c461",
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [
|
| 147 |
+
{
|
| 148 |
+
"name": "stdout",
|
| 149 |
+
"output_type": "stream",
|
| 150 |
+
"text": [
|
| 151 |
+
"\u001b[2mUsing Python 3.12.7 environment at: /home/afonso/git/private/pytorch-tutorial/.venv\u001b[0m\n",
|
| 152 |
+
"\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 34ms\u001b[0m\u001b[0m\n"
|
| 153 |
+
]
|
| 154 |
+
}
|
| 155 |
+
],
|
| 156 |
+
"source": [
|
| 157 |
+
"!uv pip install nbdev\n",
|
| 158 |
+
"from nbdev.export import nb_export"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": 2,
|
| 164 |
+
"id": "de31d563-3696-45ba-9100-06c93072508c",
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [
|
| 167 |
+
{
|
| 168 |
+
"name": "stdout",
|
| 169 |
+
"output_type": "stream",
|
| 170 |
+
"text": [
|
| 171 |
+
"Exported\n"
|
| 172 |
+
]
|
| 173 |
+
}
|
| 174 |
+
],
|
| 175 |
+
"source": [
|
| 176 |
+
"nb_export('app.ipynb', './')\n",
|
| 177 |
+
"print(\"Exported\")"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"id": "1a443132-c4ec-4990-89c3-9a6320d14640",
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": []
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"cell_type": "code",
|
| 190 |
+
"execution_count": null,
|
| 191 |
+
"id": "3058daee-595f-4829-ae93-a38bebdc4030",
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"outputs": [],
|
| 194 |
+
"source": []
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"metadata": {
|
| 198 |
+
"kernelspec": {
|
| 199 |
+
"display_name": "pytorch-tutorial",
|
| 200 |
+
"language": "python",
|
| 201 |
+
"name": "pytorch-tutorial"
|
| 202 |
+
},
|
| 203 |
+
"language_info": {
|
| 204 |
+
"codemirror_mode": {
|
| 205 |
+
"name": "ipython",
|
| 206 |
+
"version": 3
|
| 207 |
+
},
|
| 208 |
+
"file_extension": ".py",
|
| 209 |
+
"mimetype": "text/x-python",
|
| 210 |
+
"name": "python",
|
| 211 |
+
"nbconvert_exporter": "python",
|
| 212 |
+
"pygments_lexer": "ipython3",
|
| 213 |
+
"version": "3.12.7"
|
| 214 |
+
}
|
| 215 |
+
},
|
| 216 |
+
"nbformat": 4,
|
| 217 |
+
"nbformat_minor": 5
|
| 218 |
+
}
|
app.py
CHANGED
|
@@ -59,5 +59,5 @@ def predict(img):
|
|
| 59 |
image = gr.Sketchpad(type="pil", sources=(), canvas_size=(280,280), brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=20), layers=False, transforms=[])
|
| 60 |
label = gr.Label()
|
| 61 |
processed_image = gr.Image(label="What the Model Sees (28x28)")
|
| 62 |
-
intf = gr.Interface(title="
|
| 63 |
intf.launch(inline=False, debug=True)
|
|
|
|
| 59 |
image = gr.Sketchpad(type="pil", sources=(), canvas_size=(280,280), brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=20), layers=False, transforms=[])
|
| 60 |
label = gr.Label()
|
| 61 |
processed_image = gr.Image(label="What the Model Sees (28x28)")
|
| 62 |
+
intf = gr.Interface(title="Draw a digit", description="And let me identify it for you...", fn=predict, inputs=image, outputs=[label, processed_image], clear_btn=None)
|
| 63 |
intf.launch(inline=False, debug=True)
|