from getpass import getpass import os from typing import Literal, cast from langchain_core.tools import BaseTool from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.runnables import Runnable from langchain_core.messages import BaseMessage from langchain_core.language_models.base import LanguageModelInput from langchain_google_genai import ChatGoogleGenerativeAI from langchain_openai import ChatOpenAI from pydantic import BaseModel, Field, SecretStr from agent.prompts import get_system_prompt from agent.state import State from langchain_core.messages import SystemMessage, HumanMessage from langgraph.prebuilt import ToolNode API_BASE_URL = "https://api.openrouter.ai/v1" MODEL_NAME = "qwen/qwen3-235b-a22b:free" API_KEY_ENV_VAR = "OPENROUTER_API_KEY" if API_KEY_ENV_VAR not in os.environ: print(f"Please set the environment variable {API_KEY_ENV_VAR}.") os.environ[API_KEY_ENV_VAR] = getpass(f"Enter your {API_KEY_ENV_VAR} (will not be echoed): ") ### Helper functions ### def _get_model() -> BaseChatModel: # api_key = os.getenv("GOOGLE_API_KEY") # return ChatGoogleGenerativeAI( # api_key=SecretStr(api_key) if api_key else None, # model="gemini-2.5-pro" # ) api_key = os.getenv(API_KEY_ENV_VAR) return ChatOpenAI( api_key=SecretStr(api_key) if api_key else None, base_url=API_BASE_URL, model=MODEL_NAME, metadata={ "reasoning": { "effort": "high" # Use high reasoning effort } } ) def _get_tools() -> list[BaseTool]: from tools import get_all_tools return get_all_tools() def _bind_model(model: BaseChatModel) -> Runnable[LanguageModelInput, BaseMessage]: return model.bind_tools(_get_tools()) ### NODES ### # Call model node def call_model(state: State, config) -> dict[str, list[BaseMessage]]: messages = state["messages"] app_name = config.get('configurable', {}).get("app_name", "OracleBot") # Add system prompt if not already present if not messages or messages[0].type != "system": # Use dynamic system prompt if sports are mentioned system_prompt = get_system_prompt() system_message: BaseMessage = SystemMessage(content=system_prompt) messages = [system_message] + list(messages) model = _get_model() model = _bind_model(model) response = model.invoke(messages) return {"messages": [response]} # Tool node tool_node = ToolNode(tools=_get_tools())