Spaces:
Runtime error
Runtime error
abtsousa
commited on
Commit
·
8ce1b44
1
Parent(s):
3adfe4f
Refactor tool type in _get_tools;
Browse filesadd new Jupyter notebook for visualizing agent graph
- agent/nodes.py +2 -2
- data/draw_agent.ipynb +109 -0
- pyproject.toml +5 -0
- uv.lock +0 -0
agent/nodes.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from getpass import getpass
|
2 |
import os
|
3 |
from typing import Literal, cast
|
4 |
-
from langchain_core.tools import
|
5 |
from langchain_core.language_models.chat_models import BaseChatModel
|
6 |
from langchain_core.runnables import Runnable
|
7 |
from langchain_core.messages import BaseMessage
|
@@ -43,7 +43,7 @@ def _get_model() -> BaseChatModel:
|
|
43 |
}
|
44 |
)
|
45 |
|
46 |
-
def _get_tools() -> list[
|
47 |
from tools import get_all_tools
|
48 |
return get_all_tools()
|
49 |
|
|
|
1 |
from getpass import getpass
|
2 |
import os
|
3 |
from typing import Literal, cast
|
4 |
+
from langchain_core.tools import BaseTool
|
5 |
from langchain_core.language_models.chat_models import BaseChatModel
|
6 |
from langchain_core.runnables import Runnable
|
7 |
from langchain_core.messages import BaseMessage
|
|
|
43 |
}
|
44 |
)
|
45 |
|
46 |
+
def _get_tools() -> list[BaseTool]:
|
47 |
from tools import get_all_tools
|
48 |
return get_all_tools()
|
49 |
|
data/draw_agent.ipynb
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "c001759f",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\u001b[2mAudited \u001b[1m3 packages\u001b[0m \u001b[2min 69ms\u001b[0m\u001b[0m\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"!uv pip install ipykernel ipywidgets grandalf"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 8,
|
24 |
+
"id": "a3de5026",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "stdout",
|
29 |
+
"output_type": "stream",
|
30 |
+
"text": [
|
31 |
+
" +-----------+ \n",
|
32 |
+
" | __start__ | \n",
|
33 |
+
" +-----------+ \n",
|
34 |
+
" * \n",
|
35 |
+
" * \n",
|
36 |
+
" * \n",
|
37 |
+
" +-------+ \n",
|
38 |
+
" | agent | \n",
|
39 |
+
" +-------+. \n",
|
40 |
+
" . . \n",
|
41 |
+
" .. .. \n",
|
42 |
+
" . . \n",
|
43 |
+
"+---------+ +-------+ \n",
|
44 |
+
"| __end__ | | tools | \n",
|
45 |
+
"+---------+ +-------+ \n"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"import sys\n",
|
51 |
+
"import os\n",
|
52 |
+
"from dotenv import load_dotenv\n",
|
53 |
+
"# Add the parent directory (app) to Python path\n",
|
54 |
+
"sys.path.insert(0, os.path.abspath('..'))\n",
|
55 |
+
"\n",
|
56 |
+
"load_dotenv()\n",
|
57 |
+
"\n",
|
58 |
+
"from agent import get_agent\n",
|
59 |
+
"agent = get_agent()\n",
|
60 |
+
"\n",
|
61 |
+
"agent.get_graph().print_ascii()"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 9,
|
67 |
+
"id": "a2a34b4a",
|
68 |
+
"metadata": {},
|
69 |
+
"outputs": [
|
70 |
+
{
|
71 |
+
"data": {
|
72 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAAD5CAIAAADKsmwpAAAAAXNSR0IArs4c6QAAIABJREFUeJztnXdcFNf+v89sb7QtdBAsiIiKATUSY8OYYETF3m4sv1y9liQkGu81ucbc5KvGG3M1otFg9EaJigXEHkUTQUEiqKAUQUFQelu2953fH+uLcHGp7uycZc/zyh+7O7Nz3hsez3zmzMwZDMdxgECQDYXsAAgEQCIiYAGJiIACJCICCpCICChAIiKggEZ2AOjQqg0NlVqlzKCU6Q16XKe1geEtJptCY2AcBxrHgeLmyyY7Tk/A0DiiCaVc//iuvDRP0VSjcXZlcByoHAeaI5+m09jA/x86iyKu0SplehoDKy9U9g3m9R3K7TeUR3auboBEBDiOZ5xvrClTiXxYfYO53gM4ZCd6JbRqY2me/HmRqvKJKjxKEPCaA9mJuoS9i1j4h/R6Ql14lOC1iS5kZ7EwMrEu43yjUqaf/Bd3riPsNZhdi5iWVE+lgzeiRGQHIZCmWk3y3qpJC918A6Hu6e1XxN9P1fHdGMPGOpMdxBqc3V/5+hSBmy+L7CDtYqcino+r8hnICRlnFxaaOLuvMnCE48AwSEtGexxHzDjf4NmPbVcWAgCmr/K695u4oUpDdhDz2J2Ij+/LAAChEb3t0KQrLNjgm5ZUjxth3AfanYipifXDJ9ijhSb6DuHdOttAdgoz2JeI92+IA8Mc2Twq2UFII2Sc8+P7coVUT3aQttiXiGX5itFRfLJTkMzYmcKc1GayU7TFjkQsK1DQ6BQq1Y5+sll8A7l56RKyU7TFjv4qTx8q/IdwrdzoP/7xj7Nnz/bgi2+99VZlZSUBiQCDRRF5MyufqIjYeI+xIxGb6rT9rC5iQUFBD75VXV0tFosJiPOCgOG8iidK4rbfA+xFRK3a2FCpYfOIOuWanp6+cuXKMWPGzJgxY/PmzQ0NDQCAsLCwqqqqr7/+evz48QAAuVy+f//+JUuWmFbbuXOnWq02fT0iIuL48eN//etfw8LCUlNTo6KiAADTp09ft24dEWm5TvT6CsgGFHH7oKlWE7+ljKCNFxYWhoaGHjhwoLq6Oj09ff78+WvWrMFxXK1Wh4aGJicnm1Y7cODAqFGjUlJSsrKyfvvtt8jIyO+//9606O23354zZ863336bmZmp0+lu3rwZGhpaUVFBUODaclXCd88I2njPgP2iDEuhkOi5TkT92JycHBaLtXz5cgqF4u7uHhQU9OTJk5dXW7x4cUREhL+/v+ltbm5uRkbGhx9+CADAMMzJyWn9+vUEJWwD14mmkMA1gmMvIhqNgMEmqg4JCQlRq9UxMTGjRo0aO3asj49PWFjYy6vR6fTbt29v3ry5uLhYr9cDAPj8P8eSgoKCCIr3MhQaxmDBVZXBlYY4uI5USb2OoI0HBgbu3r1bJBLFxsZGR0evXr06Nzf35dViY2Pj4uKio6OTk5Ozs7OXLVvWeimDwSAo3ssomvVUGma15rqCvYjIcaQpiTydEB4evmnTpvPnz3/55ZcSiSQmJsbU57WA43hiYuK8efOio6Pd3d0BADKZjLg8HaOQ6mG7VNZeRGRzqUIvpl5nJGLjd+/ezcjIAACIRKKpU6euW7dOJpNVV1e3Xken06lUKldXV9NbrVablpZGRJiuoFEaXX2YZLVuFnsREQDA5lFLHyqI2HJubu6GDRuSkpLEYnFeXl5CQoJIJPLw8GAyma6urpmZmdnZ2RQKxc/P79y5cxUVFc3NzV999VVISIhUKlUozETy8/MDAKSkpOTl5RERuPiezK0PXBfJ2pGI/sHcp3mEiLh48eLo6OgdO3a89dZbK1as4HK5cXFxNBoNALB8+fKsrKx169apVKqtW7eyWKzZs2fPmDFj5MiRa9euZbFYkyZNqqqqarNBb2/vqKio/fv3x8bGEhG4rEDpP9jaY/sdY0dXaGs1xosHq6NXe5EdhGSeFSlLH8rHz3YlO8j/YEc9IoNJcfVm3vuNwFNnNkHGuYbBo53ITtEWuA6diCZ8qmDv+pL27hw1Go0TJ040u0ir1dLpdAwzM+TRt2/fQ4cOWTrpC3JycmJiYrobKSAgIC4uzuy3iu/JXNwYIi+4jlTsa9dsIjet2WjEh48372J7QyoajYbJNP/HwzCMxyNwToUeRKJQKFyu+RLw4sGqN6NFjny6RTNaALsTEQBw6VD1wDAH25qRwyLA/MPtqEZsYcpyj9sXGuueq8kOYlVSE+sFHgw4LbTTHvHFeY7vK15/V2DrM910kdTEeldf5qARjmQHaRd77BFNhd3sGJ+sq+L8TOgumrcsOI6f3VfpyKfBbKH99ogt3L7Y8DRfGT5V4BcE1wCvRchOacrPlE6Y6+o7EPaO395FBAA0VmkyLjQy2RSvAWz/wVyOg80PadVXaMoLFXevi4e+6Twqkk+hwHWhjVmQiC+oLFEVZcme5itc3Oh8NwbXicZ1pHGdqAYD2cm6AIbhsia9QmrAjXjxPTmLS+k/jDf0TWfYLjrsACRiW2rKVPWVWoVEr5DqKRRMKbOkiSqVqrS0dPDgwRbcJgCA50IDOOA6Uh1caJ792A4u0A0TdgoS0aqUlJRs3Ljx5MmTZAeBDpvpuhG9GyQiAgqQiAgoQCIioACJiIACJCICCpCICChAIiKgAImIgAIkIgIKkIgIKEAiIqAAiYiAAiQiAgqQiAgoQCIioACJiIACJCICCpCICChAIiKgAImIgAIkIgIKkIgIKEAiWhUMw1qecIFoDRLRquA4XldXR3YKGEEiIqAAiYiAAiQiAgqQiAgoQCIioACJiIACJCICCpCICChAIiKgAImIgAIkIgIKkIgIKEAiIqAAiYiAAiQiAgrQA3+swfz585VKJQBAq9U2NjZ6eHiYHkF/5coVsqPBAuoRrcH06dNramqqqqoaGhpwHK+qqqqqqnJwcCA7F0QgEa3B/PnzfX19W3+CYdiYMWPISwQdSERrgGHYzJkzqVRqyyd9+vSZN28eqaHgAoloJebOnevj42N6jWHYuHHjTJUiwgQS0UrQaLT58+czmUwAgLe39+zZs8lOBBdIROsxc+ZMb29vAEB4eDjqDttAIzsAdBiNeHO9TtqgMxIwrhUV8X6KMWX8yHmleQqLb5xOx/geDK6jTf5N0Tji/1B0V5aXLlHKDZ7+HIVUT3ac7sF2oD4rVLj1YY2fLeI525iOSMQ/eZQtLbqrGD/XnULByM7Sc8R1mrRTNdFrvLhOtuQiqhFfUPJAXnhHPnG+h01bCABwcWVOXel7+OsysoN0DyTiCx7cbH5jei+ZlYZKw0ZGiu5caSQ7SDdAIgIAgFppqK/Qsnm2tC/rGJ4zrfqphuwU3QCJCAAA0kadex822SksiYOAYTTYUvWPRDSBKWQ2dozcMbgBKCS29IuQiAgoQCIioACJiIACJCICCpCICChAIiKgAImIgAIkIgIKkIgIKEAiIqAAiYiAAiQiAgqQiDbAmeST27ZvJjsFsSARbYCiogKyIxBO77kU1MrI5fJTp3+5k3W7rKxEwBeGh49bvmwVi8UCABiNxu93b7+VfoNBZ0REvBM8eNjGz2MST13h8wV6vf7goR8y/7hVV1cTHBwSPX3u66+/mHhkxsxJy5b+TSJpPnwkjs1mjwgbvXbNeoFAGPPJitzcewCAq1cvnj97g8fjkf3TCQH1iD0k6UzCseM/z5v7l61bdq1c+dGN1JTDR+JMi06dPnr+QtIHaz/dv/8XNptz8NAPAAAKhQIA2B3779OJx6JnzDt29Py4sRGb/7UhNe266Vt0Ov3EiSMUCiX5zPXD/018mJfz8+EfAQC7/hM3aFDw5Mnv/n49u7daiHrEnjN3zuJxYyP69PE3vc3Ly72TlbFyxYcAgCtXL4x9c+L4cZMAAIsWLruTlWFaR6PRXLl6YeGCpdOiZgEApkROz8vLPRJ/YNzYCNMKXl4+ixctBwAAnsOIsNHFxYWk/Tyrg0TsIXQ6PSv79jfbNz8pKdbr9QAAFxc+AMBgMJSVlUa+M61lzbFvRjx4cB8AUFxcqNVqR4SNblkUMiz08q/nJFKJk6MTACAgYFDLIgcHR4VCbvWfRRpIxB4SdyD20qXklSs/GhE22s3N/aeDey9dPgsAkCvkOI5zONyWNZ2cnE0v5HIZAOCDj/5fm02JmxpNImKYbd/J+iogEXsCjuPnLyTOnrVw6rvRpk9MkgEAOGwOAECn07WsLBa/uK1TIBQBANZ98rmXl0/rrbm6ulsxO6QgEXuCwWBQqVRC4Yv7oLVabcbtNNNrOp3u6upWVlbSsnJ6RqrphbeXr2k2sOEhYaZPxOImHMc5HI7VfwF0oKPmnkCj0Xx9/S7/eq6yqkIiaf73jq+GBIfIZFKFQgEACB899mrKxazsTBzHT50+KpNJTd/icDhLl6w8En/g4cMcrVabmnZ9/YbVu77/ptPmvLx8Cgvz7t3P0mq1xP84ckAi9pBNn29lMVlLl81e/N6M0NdGvv/+WhaTFT1rUnVN1ZL3VgwZMnzD39f+5b3o8vKns2ctBADQaHQAwPx57326/otjCT9HTR///e7tnh7e69b9s9O2ot6diWHYpxvWKJWWn0MMEtAkTAAAUPdccz2hbuoKny6s2zlqtbqursbX18/0NuHEkaNHD50/d8MiG+8ikgbdjRNViz/rY81GXwXUI1qehBNHVvxtUWJSgkTS/NvvV0+e+mXaNDQ/bCeggxXLs3TJColEfPXqhQM/xYpEbtEz5i1auIzsULCDRCSEjz78O9kRbAy0a0ZAARIRAQVIRAQUIBERUIBEREABEhEBBUhEBBQgERFQgEREQAESEQEFSEQAAKBQMUd+rzrbiRtxvjuT7BTdAIkIAABCT0ZZgcJIxPNISaKxWk1j2NIdMEjEFwSOcKx+qiQ7hcVoqtH4B9vSHQhIxBdMnCe6lVSrktvSQ3La4/7vjbgBHxDiQHaQboCu0AYAgKKiIqlUOmxIaPyW8mHj+TxnurMrAzeSHaubGI14Q6W6sUoNjPjE+Tb2gEskInjy5MkXX3xx6NAh08w12deaKh6rAI5J6i1/p5IRx3U6HZPBsPiWAQB8T+ajorwGVb7PIJqfn5+fn19gYCCNZhsHYXYtYkVFhbe3d0lJSb9+/azTYklJycaNG0+ePEnQ9jdu3HjlyhUMw1xcXHg8HpPJ9PT0DAgIWLVqFUEtWgr7FfHWrVvffvvt2bNnrdmoTCa7e/fu+PHjCdr+o0ePYmJiGhoaWn9oNBo9PDwuXrxIUKMWwR4PVuRyuckJK1sIAHBwcCDOQgBAYGDgoEGD2nzI5XIht9AeRTx37ty2bdsAAJGRkdZvvb6+/ocffiC0iYULF7q4uLS8pVAoN2/eJLRFi2BHIpqKkKKioi1btpCVQSqV3rhB7A3OI0aM6Nevn+nHGo3Gvn37Wr/j7wH2ImJKSkpycjIA4NNPPyUxhqur6+rVq4luZe7cuU5OTgAAHx+fhISE3NzcrVu3Et3oK2IXByulpaVxcXHffNP5LDO9hkWLFtXW1l67ds30NjEx8cyZM7/88gvZudoH79XcunWroaGhqamJ7CAvqKur27t3LylNFxQUhIaG5uXlkdJ6p/TmXfP169dPnDghEAhaF+/kYoUasT0GDRqUnZ29ffv206dPkxKgY3rnrrm4uDggIODhw4dDhgwhO8v/QPQ4YlfYtm2bVqvdvBmuB7f0QhEPHz5cXl7+xRdfkB0EXs6dO3f06NH4+HgGMScbewLZtYElMdWCZ8+eJTtIu5BYI7bh8ePHr7/++v3798kO8oLeUyMeOHDAdJA4bdq0LqxODiTWiG3o37//7du3Y2Njjx07RnYW0EvGEXU6XVVVlcFgmDNnDtlZOsE644hd5+DBg9XV1f/8Z+ez1hKNzdeIx44dGzlypK+vL0Tljq1x+fLlAwcOxMfHc7ncLqxOCLbdI6akpFRXV/fv399WLLTCueYeEBkZuXPnzsjIyKysLLIy2KqIV69eBQAMGTJk3bp1ZGfpBvDUiG3o06dPWlrawYMHDx8+TEoAmxRxz549Dx8+BAC4u9vYo3JgqxHbsH//folEsmHDBhLaJvuwvXsUFhbiOJ6bm0t2kN7MtWvXpk6dKhaLrdmoLfWImzZtKigoAAAMHTqU7Cw9BM4asQ0RERE//vjjrFmz0tPTrdaobYgoFotVKtXo0aNnzpxJdpZXAtoasQ2enp6mM/U//fSTdVq0ARG3bdtWWVnJZrOnTJlCdpZXBfIasQ27d+/W6XQff/yxFdqCfRwxNTW1vr5+9mz0wBzSSEtL27JlS3x8vKsrkfdKW7Mg7RaxsbE4jqtUKrKDWBJ4zjV3i/r6+nfeeScnJ4e4JiDdNSclJTU1NQEATDe99xpYLNb9+/fJTtFthELh5cuX9+7dW1lZSVATkO6a1Wo1jUazlVkKuoVOp9Pr9RiG2dy/sbCwsKysLAwjZJIxSHtEFovVKy00PVmczWafOHGiurqa7Czd4NGjRwMHDiTIQnhF3LVrV1JSEtkpCGTJkiUxMTFkp+gGhYWFL9+6b0EgFVGr1ep0OrJTEMuJEycAAM+fPyc7SJcoKCgICgoibvuQivjxxx/PmjWL7BTWIDU19e7du2Sn6Bw77RHpdHpvrRHbsHjx4suXL5OdonMePXpkjyL2+hqxNaYLpDMzM8kO0i4FBQWEWgiviPZQI7ahoqLiypUrZKcwD9H7ZXifYP/xxx8TN1IAJ7Nnzz516hTZKcxTUFBA9B3ikPaI9lMjtsZ089fx48fJDtIWK/SIkIpoVzViGwQCAVSzghiNxsePHw8cOJDQViAV0Q5rxBYmT57s5+dHdoo/IXoE0QSkItrPOKJZwsLCAACQzJpihf0yvCLaZ43Yhujo6KNHj5Kdwr5FtOcasYXhw4dPmDCB7BT2vWu25xqxNZ6enqaukawAer3+6dOnAwYMILohSEW08xqxDfv374+Pj2/9yeTJk63TtHW6Q3hFRDVia9zc3ObNmyeXy1UqFQBgypQpjY2Nn332mRWatk6BCO+ZlV27dvn6+tr6zaMWhMFgMBiMMWPGODs719XVYRiWn5/f1NTE5/MJbbegoGDEiBGENmEC0h4R1YhmEQgENTU1ptdNTU1WeJKP1XpESO9Z0el0GIahvXNrZs2aVV5e3vLWaDSGh4fv2bOHuBa1Wu24ceNu375NXBMtQNojohqxDdHR0U+fPjUa/3yGNIVCKS8vLy0tJa5Rqx2pwCsiGkdsw5kzZ6Kjo/38/JydnU3dIQCgtraW0L2z1fbL8B6soBrxZTZt2gQAePDgwc2bN2/evNnY2CgRK1Ov35k5bRFBLRblPxs+fLhMrO/xFnAcOPK75BhcNeLEiRMlEklLJAzDcBx3d3e/dOkS2dHgIjul6cEtsRHT6zU4m7D7o/V6PZVGe5XLQl08mJWPlf2HcUdNETjy6R2sCVePGB4efunSJQrlz4KBQqFERUWRGgo6fj1cw+PTI5f78pw7+tNCgl5nbK7Tnvq+YuYaLxfXdmeYhqtGXLBggemkVgve3t4LFiwgLxF0XP65xsWdOWyswCYsBADQ6BShF2vuJ/5n9lZKm9ott+AScfDgwcHBwS1vMQx75513TOU5AgBQVqBgsKlBr8PyaMFuMWGeR+alpvaWwiUiAOC9994TCoWm197e3nPnziU7EUTUPdfQmdD9ybqIixvzSY6svaXQ/aqgoKCWmYkjIyPhebAoDGiUBqEHk+wUPYRKw3wHcpvrtWaXQiciAGDp0qUCgcDd3R11h21QSA16Wx7UaqrVtndz5qseNVeVKCUNeoVMr5QajAag1xu78KVOEYwZuIrL5WZf1gBQ++qbY7IpGMA4jlSOI1XgyRR52mqn0ovpoYjlhYrie/LSPIWLOxvHMSqdSqFTKVSqpUYlg4eOBwDIFBbZGJArMaPBYKjUG7RqnVqiUxv6DeUGhjm49bGxGQp7Md0WsfqpKu1MI53DwGjMfqNdaHQqMcEIRKvSNzYoUpPFbA54c4bAWWQbj0/r3XRPxGvH66tK1QJ/PtfFhvsSBpvG93ECAEjrFImxVYNGOoRPFZAdyt7p6sGKXmf8+atytYHp+5qnTVvYGkdXbr/RPnU1lDN7iZoaGtFFuiSiQY/HbSz1CHLjCUh7jCpxOHs50p0cE3bYxoSZvZXORTQa8X0bSoIi/Jlc2zin1AN4Ao6jF//w/5V3YV0EIXQu4tFtzwaEe1klDJlwnFl8H+eLB21pgvXeRCci3khscPZxZnLt4rjSwZWnA8yc1Gayg9gjHYnYWKV5mqdwEPGsmIdknD2dbiU3QHWNpp3QkYhpyY1Cf2LvVoQQ9wCXm8mNZKewO9oVsaZMpTdQHEQc6+bpKjkPr63fNEquEFt8y0I/58pSjUZlsPiWbZQZMycdiSf8YbntivgkV4FRe+1hcidglLJ8JdkhLMO/vvrHpctnyU7ROe2KWPJA4eAKaXdINBw+93GOnOwUlqGoqIDsCF3C/Ck+cZ2W7UAn7mC57NmDq7//9LyigMd1GTRwzOQJ77NYXABAeuaplNRDq5bvO5Kwsbau1MOt/9jwBSNem2r61oVfY7NzLzEZnOFD33YV+hKUDQDg6MqpzpcSt32rMSEiDADw7Y6v9+3fef7sDQBAenrq4SNx5c+eOjk59+8/8KMP/u7m5m5auYNFLWT+kX7ixJFHRfl8vjA4eNiK9z8QCIQWiWq+R5Q369Uqi1zQZYaGxuc//vyBTqdZu+KnJQu3V9c+3ndolcGgBwBQaXSVSpZ8ccfcGZ99+1Xm0OCJJ5P/T9xcAwDIuJOYcef0zHc//WjlfwUunim/HyQonukWBblYp5D2/DZKSPj1UjoA4NP1m0wWZt/944svP508+d2TCZc2b/qmtrZ61+5vTGt2sKiF4sePNn720fDhI34+dPrDDzaUlBRv//eXlopqXkSl1EAl7LKae7m/0qj0pQu2u4n83F37zpn+eWV1UV5hqmmpwaB7a8L7fXyGYBgWFvIujuOV1cUAgFu3Tw4dHDE0eCKH4zjitan9+4YRFM8Eg0VVSGxexDYc+u++sW9OnD1roZOT8+DBQ1ev+iQz89ajooKOF7WQ9zCHxWItXrTczc191Mjw777dt2DBUktla0dEmZ7KIOpO07JnD3y8g7jcF7dE8V08BHzvp+U5LSv4eg02veCwHQEAKrUMx/GGpudurv4t63h7BhIUzwSdTVXafo/YhtLSx4GBg1veDgwIAgA8epTf8aIWgoeEqNXqjZ/HnDp9tKLyuZOT8/AQi3UH7dqGAaIGdVVq+fPKgvWbRrX+UCr7c+ju5avJ1RqF0WhgMv88eGIw2ATFM2E0ANC7njgkl8s1Gg2T+eeVUxwOBwCgVCo6WNR6CwEDAr/Ztjst7Xrcgdgf9u0MfW3k0iUrg4OHWSSeeRE5jjSDTm2RBl7GwUHg3yfk7YkrWn/I5Tp18BUWk0uhUHWtImm0xA6vGLQGriNcsw+8IiwWCwCgVqtaPlEoFQAAAV/YwaI2Gxk1MnzUyPBlS/929+4fiUnHP/s85kzSNSrVAlWc+V0zx4Fq0BE1ouvpNqBZUtPXb3j/vqGm/3g8F1dhR08WwTDMxdmj7NnDlk8Ki9IJimdCqzZwHG3v4vMOoNFoAwMG5ec/aPnE9LpvvwEdLGq9hZycu3/cyQAACIWit9+eumb1Oplc1tBQb5F45kV05NPoDKJ2TGPDFxiNxnOXd2q16rr68gtX9ny3Z2F17ZOOvzUseNLDgt9zHl4DAPx280h5RR5B8UxXvvGcab2gR2QymSKRa3Z25v2cbL1eHz1j3q30G4mJx6Uy6f2c7B/2/ee14SMG9B8IAOhgUQt5+blf/mvD+QtJzc3igsK8pDMJQqFIKBRZJKr5/9dOQoZebVDLtCwHyw8lcjiO69ce+/1m/K79S+rqy3y9B8+Z8XmnBx+Txi1TKMTJl7775eTn/n1CpkXGHDv1BUFXJ0hrFS6uveSs0qKFy//78/47WRnHj12YPPnd+oa6E6fi9/zwnZube1jo6399f61ptQ4WtTB3zuLmZvGevTv+s3Mrg8GYOOHtnf+Js8h+uaPZwG5fbKwow0V97fH+9qr8uhERvAHDHcgO0pZfD9d49uP5D7HV66HOxJZP/5unk9DMP/J2T/H1H8bF9b1t/KKLYJjBf3AvvCkCZtotg0TeLDYHl9QqnNzM/0maJXU79pifp4vN5Kk05s/Vuov6rl1xoKdpzfDPLRHtLTIY9FSqmR/o6z14xZLd7X2rvlTsH8SmMWCcA6MX01E9Pnam8PSuyvZEdODxP1kdb3aRVqtmMMzf6UehWPgIoL0MAACtTsOgm5nUgUZrt/A1Goz1TyVz1vSzXEBEl+hICycBfdAoXmO9zEFkplqiUml8F09z37Mqls0grZaMn2OZs/iIbtHJDih8qlDZIFc2EzW4DRWSaimPawwa1dHQOoIgOq+E5n3i/ex+jU7dyw9cmmvkqib5pIWuZAexU7pUkq/c3vdx+vNe3C9KauRArZi/3ofsIPZLl0TEMGz1jv7SyiZpbbszftou4udiBqaasYr8etee6cYgxfz1PgKBoTSzQlpnoeniyEZcKX10o9x/IC1yadtLkRFWpnuDKW9ECYJGOaSdaWwoUeJUuqOIa4vzkKikGlm90qjRCD3pU77sw2T3qosbbJRuj+q5uDKmr/SoKVM/zpGXPKhlcmhGI0ZlUKl0KoVGBYRdxfgqYBim1xmMWr1ea9CqdEw2ZUAIL+A1EZoZER56OLzs7sdy92O9OUPYVKOVNOgUUr1CojfojQY9jCIyWBiFSuE6cjiOVKEXg+dke714r+dVz3Pw3Rl8d9SvIF4VdEbVluA60Wx60gO+O7O94g2JaEuwuZSGSg3ZKXqITmusKFY4Cc3vP5GItoRbH5ZOY6uT8jTVaDq4xBOJaEv4BHAwDNz/zSYnK/vtWNUb09qdNB+u5zUjukJaUr1Oh/cb6ijwtIFZ9RW6zPHgAAAAZ0lEQVRSvaRe83tCzV8+9+W2P16BRLRJ8m5L8jOkaqVBQ9jMMBZB5MVsrtP6D+G+ESXs+HGWSEQbBseBVg21iLgRZ3G7dOIKiYiAAnSwgoACJCICCpCICChAIiKgAImIgAIkIgIK/j88u/2J087bqAAAAABJRU5ErkJggg==",
|
73 |
+
"text/plain": [
|
74 |
+
"<IPython.core.display.Image object>"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"metadata": {},
|
78 |
+
"output_type": "display_data"
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"source": [
|
82 |
+
"from IPython.display import Image, display\n",
|
83 |
+
"\n",
|
84 |
+
"display(Image(agent.get_graph().draw_mermaid_png()))"
|
85 |
+
]
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"kernelspec": {
|
90 |
+
"display_name": "oraclebot",
|
91 |
+
"language": "python",
|
92 |
+
"name": "python3"
|
93 |
+
},
|
94 |
+
"language_info": {
|
95 |
+
"codemirror_mode": {
|
96 |
+
"name": "ipython",
|
97 |
+
"version": 3
|
98 |
+
},
|
99 |
+
"file_extension": ".py",
|
100 |
+
"mimetype": "text/x-python",
|
101 |
+
"name": "python",
|
102 |
+
"nbconvert_exporter": "python",
|
103 |
+
"pygments_lexer": "ipython3",
|
104 |
+
"version": "3.13.5"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"nbformat": 4,
|
108 |
+
"nbformat_minor": 5
|
109 |
+
}
|
pyproject.toml
CHANGED
@@ -7,15 +7,20 @@ requires-python = ">=3.13"
|
|
7 |
dependencies = [
|
8 |
"arize-phoenix-otel>=0.12.0",
|
9 |
"gradio[oauth]>=5.42.0",
|
|
|
|
|
|
|
10 |
"langchain-community>=0.3.27",
|
11 |
"langchain-google-genai>=2.1.9",
|
12 |
"langchain[google-genai,googlegenai,openai]>=0.3.26",
|
13 |
"langgraph>=0.4.8",
|
|
|
14 |
"openinference-instrumentation-langchain>=0.1.43",
|
15 |
"opentelemetry-api>=1.34.1",
|
16 |
"opentelemetry-instrumentation>=0.55b1",
|
17 |
"python-dotenv>=1.1.1",
|
18 |
"requests>=2.32.4",
|
|
|
19 |
"termcolor>=3.1.0",
|
20 |
"wikipedia>=1.4.0",
|
21 |
]
|
|
|
7 |
dependencies = [
|
8 |
"arize-phoenix-otel>=0.12.0",
|
9 |
"gradio[oauth]>=5.42.0",
|
10 |
+
"grandalf>=0.8",
|
11 |
+
"ipykernel>=6.30.1",
|
12 |
+
"ipywidgets>=8.1.7",
|
13 |
"langchain-community>=0.3.27",
|
14 |
"langchain-google-genai>=2.1.9",
|
15 |
"langchain[google-genai,googlegenai,openai]>=0.3.26",
|
16 |
"langgraph>=0.4.8",
|
17 |
+
"matplotlib>=3.10.5",
|
18 |
"openinference-instrumentation-langchain>=0.1.43",
|
19 |
"opentelemetry-api>=1.34.1",
|
20 |
"opentelemetry-instrumentation>=0.55b1",
|
21 |
"python-dotenv>=1.1.1",
|
22 |
"requests>=2.32.4",
|
23 |
+
"seaborn>=0.13.2",
|
24 |
"termcolor>=3.1.0",
|
25 |
"wikipedia>=1.4.0",
|
26 |
]
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|