Spaces:
Runtime error
Runtime error
File size: 3,902 Bytes
bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 bca8e6b 0ad9aa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
from pathlib import Path
from flask import Flask, render_template, request, jsonify
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import warnings
# Suppress FutureWarnings
warnings.filterwarnings("ignore", category=FutureWarning)
# Set the TRANSFORMERS_CACHE to a writable directory
os.environ["TRANSFORMERS_CACHE"] = "./cache" # Modify this path if needed
app = Flask(__name__)
# Configuration # Directory containing model files
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_LENGTH = 512
BERT_TOKENIZER = 'bert-base-uncased'
ROBERTA_TOKENIZER = 'jcblaise/roberta-tagalog-base'
ELECTRA_TOKENIZER = 'google/electra-base-discriminator'
LABELS = ["fake", "real"]
class Classifier:
def __init__(self, model_path, device, tokenizer_name):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.model = AutoModelForSequenceClassification.from_pretrained(
model_path,
local_files_only=True,
device_map=device
)
self.model.eval()
def predict(self, text):
"""Make prediction for a single text"""
# Tokenize
inputs = self.tokenizer(
text,
truncation=True,
max_length=MAX_LENGTH,
padding=True,
return_tensors="pt"
).to(self.device)
# Get prediction
with torch.no_grad():
outputs = self.model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence_scores = probabilities[0].tolist()
# Format results
result = {
'predicted_class': LABELS[predicted_class],
'confidence_scores': {
label: score
for label, score in zip(LABELS, confidence_scores)
}
}
return result
@app.route('/')
def home():
return render_template('index.html')
@app.route('/detect', methods=['POST'])
def detect():
try:
data = request.get_json()
news_text = data.get('text')
model_chosen = data.get('model')
print(model_chosen)
if not news_text:
return jsonify({
'status': 'error',
'message': 'No text provided'
}), 400
switch = {
'nonaug-bert': 'bert-nonaug',
'aug-bert': 'bert-aug',
'nonaug-tagbert': 'tagbert-nonaug',
'aug-tagbert': 'tagbert-aug',
'nonaug-electra': 'electra-nonaug',
'aug-electra': 'electra-aug'
}
model_p = switch.get(model_chosen)
print("model", model_p)
# Adjusting the model path to point to the correct folder inside 'webapp'
MODEL_PATH = Path("huggingface", "webapp", model_p) # Corrected model path to webapp folder
print(MODEL_PATH)
tokenizer = model_chosen.split("-")[1]
tokenizer_chosen = {
'bert': BERT_TOKENIZER,
'tagbert': ROBERTA_TOKENIZER,
'electra': ELECTRA_TOKENIZER
}
print(tokenizer)
classifier = Classifier(MODEL_PATH, DEVICE, tokenizer_chosen.get(tokenizer))
result = classifier.predict(news_text)
print(result['confidence_scores'])
if result['predicted_class'] == "fake":
out = "News Needs Further Validation"
else:
out = "News is Real"
return jsonify({
'status': 'success',
'prediction': out,
'confidence': result['confidence_scores']
})
except Exception as e:
return jsonify({
'status': 'error',
'message': str(e)
}), 400
if __name__ == '__main__':
app.run(debug=True)
|