Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from share_btn import community_icon_html, loading_icon_html, share_js | |
| from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler | |
| import lora | |
| import copy | |
| import json | |
| import gc | |
| import random | |
| from urllib.parse import quote | |
| import gdown | |
| import os | |
| import diffusers | |
| from diffusers.utils import load_image | |
| from diffusers.models import ControlNetModel | |
| from diffusers import AutoencoderKL, DPMSolverMultistepScheduler | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from insightface.app import FaceAnalysis | |
| from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps | |
| from controlnet_aux import ZoeDetector | |
| from compel import Compel, ReturnedEmbeddingsType | |
| with open("sdxl_loras.json", "r") as file: | |
| data = json.load(file) | |
| sdxl_loras_raw = [ | |
| { | |
| "image": item["image"], | |
| "title": item["title"], | |
| "repo": item["repo"], | |
| "trigger_word": item["trigger_word"], | |
| "weights": item["weights"], | |
| "is_compatible": item["is_compatible"], | |
| "is_pivotal": item.get("is_pivotal", False), | |
| "text_embedding_weights": item.get("text_embedding_weights", None), | |
| "likes": item.get("likes", 0), | |
| "downloads": item.get("downloads", 0), | |
| "is_nc": item.get("is_nc", False), | |
| "new": item.get("new", False), | |
| } | |
| for item in data | |
| ] | |
| with open("defaults_data.json", "r") as file: | |
| lora_defaults = json.load(file) | |
| device = "cuda" | |
| state_dicts = {} | |
| for item in sdxl_loras_raw: | |
| saved_name = hf_hub_download(item["repo"], item["weights"]) | |
| if not saved_name.endswith('.safetensors'): | |
| state_dict = torch.load(saved_name) | |
| else: | |
| state_dict = load_file(saved_name) | |
| state_dicts[item["repo"]] = { | |
| "saved_name": saved_name, | |
| "state_dict": state_dict | |
| } | |
| sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True] | |
| sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] | |
| # download models | |
| hf_hub_download( | |
| repo_id="InstantX/InstantID", | |
| filename="ControlNetModel/config.json", | |
| local_dir="/data/checkpoints", | |
| ) | |
| hf_hub_download( | |
| repo_id="InstantX/InstantID", | |
| filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
| local_dir="/data/checkpoints", | |
| ) | |
| hf_hub_download( | |
| repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints" | |
| ) | |
| hf_hub_download( | |
| repo_id="latent-consistency/lcm-lora-sdxl", | |
| filename="pytorch_lora_weights.safetensors", | |
| local_dir="/data/checkpoints", | |
| ) | |
| # download antelopev2 | |
| if not os.path.exists("/data/antelopev2.zip"): | |
| gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True) | |
| os.system("unzip /data/antelopev2.zip -d /data/models/") | |
| app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider']) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| # prepare models under ./checkpoints | |
| face_adapter = f'/data/checkpoints/ip-adapter.bin' | |
| controlnet_path = f'/data/checkpoints/ControlNetModel' | |
| # load IdentityNet | |
| identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
| zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", | |
| vae=vae, | |
| controlnet=[identitynet, zoedepthnet], | |
| torch_dtype=torch.float16) | |
| compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) | |
| pipe.load_ip_adapter_instantid(face_adapter) | |
| pipe.set_ip_adapter_scale(0.8) | |
| zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") | |
| zoe.to("cuda") | |
| original_pipe = copy.deepcopy(pipe) | |
| pipe.to(device) | |
| last_lora = "" | |
| last_merged = False | |
| last_fused = False | |
| js = ''' | |
| var button = document.getElementById('button'); | |
| // Add a click event listener to the button | |
| button.addEventListener('click', function() { | |
| element.classList.add('selected'); | |
| }); | |
| ''' | |
| def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False): | |
| lora_repo = sdxl_loras[selected_state.index]["repo"] | |
| new_placeholder = "Type a prompt to use your selected LoRA" | |
| weight_name = sdxl_loras[selected_state.index]["weights"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" | |
| for lora_list in lora_defaults: | |
| if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: | |
| face_strength = lora_list.get("face_strength", face_strength) | |
| image_strength = lora_list.get("image_strength", image_strength) | |
| weight = lora_list.get("weight", weight) | |
| depth_control_scale = lora_list.get("depth_control_scale", depth_control_scale) | |
| negative = lora_list.get("negative", negative) | |
| if(is_new): | |
| if(selected_state.index == 0): | |
| selected_state.index = -9999 | |
| else: | |
| selected_state.index *= -1 | |
| return ( | |
| updated_text, | |
| gr.update(placeholder=new_placeholder), | |
| face_strength, | |
| image_strength, | |
| weight, | |
| depth_control_scale, | |
| negative, | |
| selected_state | |
| ) | |
| def center_crop_image_as_square(img): | |
| square_size = min(img.size) | |
| left = (img.width - square_size) / 2 | |
| top = (img.height - square_size) / 2 | |
| right = (img.width + square_size) / 2 | |
| bottom = (img.height + square_size) / 2 | |
| img_cropped = img.crop((left, top, right, bottom)) | |
| return img_cropped | |
| def check_selected(selected_state): | |
| if not selected_state: | |
| raise gr.Error("You must select a LoRA") | |
| def merge_incompatible_lora(full_path_lora, lora_scale): | |
| for weights_file in [full_path_lora]: | |
| if ";" in weights_file: | |
| weights_file, multiplier = weights_file.split(";") | |
| multiplier = float(multiplier) | |
| else: | |
| multiplier = lora_scale | |
| lora_model, weights_sd = lora.create_network_from_weights( | |
| multiplier, | |
| full_path_lora, | |
| pipe.vae, | |
| pipe.text_encoder, | |
| pipe.unet, | |
| for_inference=True, | |
| ) | |
| lora_model.merge_to( | |
| pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" | |
| ) | |
| del weights_sd | |
| del lora_model | |
| gc.collect() | |
| def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)): | |
| global last_lora, last_merged, last_fused, pipe | |
| face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
| face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
| face_emb = face_info['embedding'] | |
| face_kps = draw_kps(face_image, face_info['kps']) | |
| for lora_list in lora_defaults: | |
| if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: | |
| prompt_full = lora_list["model"].get("prompt", None) | |
| if(prompt_full): | |
| prompt = prompt_full.replace("<subject>", prompt) | |
| print("Prompt:", prompt) | |
| #prepare face zoe | |
| with torch.no_grad(): | |
| image_zoe = zoe(face_image) | |
| width, height = face_kps.size | |
| images = [face_kps, image_zoe.resize((height, width))] | |
| #if(selected_state.index < 0): | |
| # if(selected_state.index == -9999): | |
| # selected_state.index = 0 | |
| # else: | |
| # selected_state.index *= -1 | |
| #sdxl_loras = sdxl_loras_new | |
| print("Selected State: ", selected_state.index) | |
| print(sdxl_loras[selected_state.index]["repo"]) | |
| if negative == "": | |
| negative = None | |
| if not selected_state: | |
| raise gr.Error("You must select a LoRA") | |
| repo_name = sdxl_loras[selected_state.index]["repo"] | |
| weight_name = sdxl_loras[selected_state.index]["weights"] | |
| full_path_lora = state_dicts[repo_name]["saved_name"] | |
| loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"]) | |
| cross_attention_kwargs = None | |
| print("Last LoRA: ", last_lora) | |
| print("Current LoRA: ", repo_name) | |
| print("Last fused: ", last_fused) | |
| if last_lora != repo_name: | |
| if(last_fused): | |
| pipe.unfuse_lora() | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights(loaded_state_dict) | |
| pipe.fuse_lora() | |
| last_fused = True | |
| is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] | |
| if(is_pivotal): | |
| #Add the textual inversion embeddings from pivotal tuning models | |
| text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"] | |
| embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") | |
| state_dict_embedding = load_file(embedding_path) | |
| print(state_dict_embedding) | |
| try: | |
| pipe.unload_textual_inversion() | |
| pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
| pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
| except: | |
| pipe.unload_textual_inversion() | |
| pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
| pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
| conditioning, pooled = compel(prompt) | |
| if(negative): | |
| negative_conditioning, negative_pooled = compel(negative) | |
| else: | |
| negative_conditioning, negative_pooled = None, None | |
| image = pipe( | |
| prompt_embeds=conditioning, | |
| pooled_prompt_embeds=pooled, | |
| negative_prompt_embeds=negative_conditioning, | |
| negative_pooled_prompt_embeds=negative_pooled, | |
| width=1024, | |
| height=1024, | |
| image_embeds=face_emb, | |
| image=face_image, | |
| strength=1-image_strength, | |
| control_image=images, | |
| num_inference_steps=20, | |
| guidance_scale = guidance_scale, | |
| controlnet_conditioning_scale=[face_strength, depth_control_scale], | |
| ).images[0] | |
| last_lora = repo_name | |
| gc.collect() | |
| return image, gr.update(visible=True) | |
| def shuffle_gallery(sdxl_loras): | |
| random.shuffle(sdxl_loras) | |
| return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras | |
| def swap_gallery(order, sdxl_loras): | |
| if(order == "random"): | |
| return shuffle_gallery(sdxl_loras) | |
| else: | |
| sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) | |
| return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
| def deselect(): | |
| return gr.Gallery(selected_index=None) | |
| with gr.Blocks(css="custom.css") as demo: | |
| gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
| gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new) | |
| title = gr.HTML( | |
| """<h1>Face to All</h1>""", | |
| elem_id="title", | |
| ) | |
| selected_state = gr.State() | |
| with gr.Row(elem_id="main_app"): | |
| with gr.Group(elem_id="gallery_box"): | |
| photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil") | |
| selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) | |
| order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") | |
| #new_gallery = gr.Gallery( | |
| # label="New LoRAs", | |
| # elem_id="gallery_new", | |
| # columns=3, | |
| # value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False) | |
| gallery = gr.Gallery( | |
| #value=[(item["image"], item["title"]) for item in sdxl_loras], | |
| label="SDXL LoRA Gallery", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False, | |
| height=784 | |
| ) | |
| with gr.Column(): | |
| prompt_title = gr.Markdown( | |
| value="### Click on a LoRA in the gallery to select it", | |
| visible=True, | |
| elem_id="selected_lora", | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="A person", elem_id="prompt") | |
| button = gr.Button("Run", elem_id="run_button") | |
| with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
| community_icon = gr.HTML(community_icon_html) | |
| loading_icon = gr.HTML(loading_icon_html) | |
| share_button = gr.Button("Share to community", elem_id="share-btn") | |
| result = gr.Image( | |
| interactive=False, label="Generated Image", elem_id="result-image" | |
| ) | |
| face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models") | |
| image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo") | |
| with gr.Accordion("Advanced options", open=False): | |
| negative = gr.Textbox(label="Negative Prompt") | |
| weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight") | |
| guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale") | |
| depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght") | |
| order_gallery.change( | |
| fn=swap_gallery, | |
| inputs=[order_gallery, gr_sdxl_loras], | |
| outputs=[gallery, gr_sdxl_loras], | |
| queue=False | |
| ) | |
| gallery.select( | |
| fn=update_selection, | |
| inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative], | |
| outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state], | |
| queue=False, | |
| show_progress=False | |
| ) | |
| #new_gallery.select( | |
| # fn=update_selection, | |
| # inputs=[gr_sdxl_loras_new, gr.State(True)], | |
| # outputs=[prompt_title, prompt, prompt, selected_state, gallery], | |
| # queue=False, | |
| # show_progress=False | |
| #) | |
| prompt.submit( | |
| fn=check_selected, | |
| inputs=[selected_state], | |
| queue=False, | |
| show_progress=False | |
| ).success( | |
| fn=center_crop_image_as_square, | |
| inputs=[photo], | |
| outputs=[photo], | |
| queue=False, | |
| show_progress=False, | |
| ).success( | |
| fn=run_lora, | |
| inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras], | |
| outputs=[result, share_group], | |
| ) | |
| button.click( | |
| fn=check_selected, | |
| inputs=[selected_state], | |
| queue=False, | |
| show_progress=False | |
| ).success( | |
| fn=center_crop_image_as_square, | |
| inputs=[photo], | |
| outputs=[photo], | |
| queue=False, | |
| show_progress=False, | |
| ).success( | |
| fn=run_lora, | |
| inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras], | |
| outputs=[result, share_group], | |
| ) | |
| share_button.click(None, [], [], js=share_js) | |
| demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js) | |
| demo.queue(max_size=20) | |
| demo.launch(share=True) |