import gradio as gr import torch from diffusers import AudioLDMPipeline from share_btn import community_icon_html, loading_icon_html, share_js from transformers import AutoProcessor, ClapModel # make Space compatible with CPU duplicates if torch.cuda.is_available(): device = "cuda" torch_dtype = torch.float16 else: device = "cpu" torch_dtype = torch.float32 # load the diffusers pipeline repo_id = "cvssp/audioldm-m-full" pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) pipe.unet = torch.compile(pipe.unet) # CLAP model (only required for automatic scoring) clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device) processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full") generator = torch.Generator(device) def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates): if text is None: raise gr.Error("Please provide a text input.") waveforms = pipe( text, audio_length_in_s=duration, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_waveforms_per_prompt=n_candidates if n_candidates else 1, generator=generator.manual_seed(int(random_seed)), )["audios"] if waveforms.shape[0] > 1: waveform = score_waveforms(text, waveforms) else: waveform = waveforms[0] return gr.make_waveform((16000, waveform), bg_image="bg.png") def score_waveforms(text, waveforms): inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities most_probable = torch.argmax(probs) # and now select the most likely audio waveform waveform = waveforms[most_probable] return waveform css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ iface = gr.Blocks(css=css) with iface: gr.HTML( """ <div style="text-align: center; max-width: 700px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; " > <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> AudioLDM: Text-to-Audio Generation with Latent Diffusion Models </h1> </div> <p style="margin-bottom: 10px; font-size: 94%"> <a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm">[🧨 Diffusers]</a> </p> </div> """ ) gr.HTML( """ <p>This is the demo for AudioLDM, powered by 🧨 Diffusers. Demo uses the checkpoint <a href="https://huggingface.co/cvssp/audioldm-m-full"> audioldm-m-full </a>. For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/> <a href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> <p/> """ ) with gr.Group(): with gr.Box(): textbox = gr.Textbox( value="A hammer is hitting a wooden surface", max_lines=1, label="Input text", info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", elem_id="prompt-in", ) negative_textbox = gr.Textbox( value="low quality, average quality", max_lines=1, label="Negative prompt", info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.", elem_id="prompt-in", ) with gr.Accordion("Click to modify detailed configurations", open=False): seed = gr.Number( value=45, label="Seed", info="Change this value (any integer number) will lead to a different generation result.", ) duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)") guidance_scale = gr.Slider( 0, 4, value=2.5, step=0.5, label="Guidance scale", info="Large => better quality and relevancy to text; Small => better diversity", ) n_candidates = gr.Slider( 1, 3, value=3, step=1, label="Number waveforms to generate", info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", ) outputs = gr.Video(label="Output", elem_id="output-video") btn = gr.Button("Submit").style(full_width=True) with gr.Group(elem_id="share-btn-container", visible=False): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") btn.click( text2audio, inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], outputs=[outputs], ) share_button.click(None, [], [], _js=share_js) gr.HTML( """ <div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;"> <p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM" style="text-decoration: underline;" target="_blank"> Github repo</a> </p> <br> <p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a>. Code and demo by 🤗 Hugging Face.</p> <br> </div> """ ) gr.Examples( [ ["A hammer is hitting a wooden surface", "low quality, average quality", 5, 2.5, 45, 3], ["Peaceful and calming ambient music with singing bowl and other instruments.", "low quality, average quality", 5, 2.5, 45, 3], ], fn=text2audio, inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], outputs=[outputs], cache_examples=True, ) gr.HTML( """ <div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated Audio</p> <p>1. Try to use more adjectives to describe your sound. For example: "A man is speaking clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM understands what you want.</p> <p>2. Try to use different random seeds, which can affect the generation quality significantly sometimes.</p> <p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or abstract objects that humans may not be familiar with, such as 'mummy'.</p> <p>4. Using a negative prompt to not guide the diffusion process can improve the audio quality significantly. Try using negative prompts like 'low quality'.</p> </div> """ ) with gr.Accordion("Additional information", open=False): gr.HTML( """ <div class="acknowledgments"> <p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p> </div> """ ) # <p>This demo is strictly for research demo purpose only. For commercial use please <a href="haoheliu@gmail.com">contact us</a>.</p> iface.queue(max_size=10).launch(debug=True)