from huggingface_hub.keras_mixin import from_pretrained_keras from PIL import Image import numpy as np from create_maxim_model import Model from maxim.configs import MAXIM_CONFIGS _MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol") def mod_padding_symmetric(image, factor=64): """Padding the image to be divided by factor.""" height, width = image.shape[0], image.shape[1] height_pad, width_pad = ((height + factor) // factor) * factor, ( (width + factor) // factor ) * factor padh = height_pad - height if height % factor != 0 else 0 padw = width_pad - width if width % factor != 0 else 0 image = tf.pad( image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" ) return image def _convert_input_type_range(img): """Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1]. """ img_type = img.dtype img = img.astype(np.float32) if img_type == np.float32: pass elif img_type == np.uint8: img /= 255.0 else: raise TypeError( "The img type should be np.float32 or np.uint8, " f"but got {img_type}" ) return img def _convert_output_type_range(img, dst_type): """Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range. """ if dst_type not in (np.uint8, np.float32): raise TypeError( "The dst_type should be np.float32 or np.uint8, " f"but got {dst_type}" ) if dst_type == np.uint8: img = img.round() else: img /= 255.0 return img.astype(dst_type) def make_shape_even(image): """Pad the image to have even shapes.""" height, width = image.shape[0], image.shape[1] padh = 1 if height % 2 != 0 else 0 padw = 1 if width % 2 != 0 else 0 image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") return image def process_image(image: Image): input_img = np.asarray(image) / 255.0 height, width = input_img.shape[0], input_img.shape[1] # Padding images to have even shapes input_img = make_shape_even(input_img) height_even, width_even = input_img.shape[0], input_img.shape[1] # padding images to be multiplies of 64 input_img = mod_padding_symmetric(input_img, factor=64) input_img = tf.expand_dims(input_img, axis=0) return input_img, height_even, width_even def init_new_model(input_img): configs = MAXIM_CONFIGS.get("S-2") configs.update( { "variant": "S-2", "dropout_rate": 0.0, "num_outputs": 3, "use_bias": True, "num_supervision_scales": 3, } ) configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) new_model = Model(**configs) new_model.set_weights(_MODEL.get_weights()) return new_model def infer(image): preprocessed_image, height_even, width_even = process_image(image) new_model = init_new_model(preprocessed_image) preds = new_model.predict(preprocessed_image) if isinstance(preds, list): preds = preds[-1] if isinstance(preds, list): preds = preds[-1] preds = np.array(preds[0], np.float32) new_height, new_width = preds.shape[0], preds.shape[1] h_start = new_height // 2 - height_even // 2 h_end = h_start + height w_start = new_width // 2 - width_even // 2 w_end = w_start + width preds = preds[h_start:h_end, w_start:w_end, :] return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8)))