Spaces:
Running
Running
Commit
·
6dbb459
1
Parent(s):
abc61cb
Optimize model loading and error handling in PoetryGenerationService; implement async poem generation and enhance application startup process
Browse files- .gitignore +3 -0
- __pycache__/main.cpython-312.pyc +0 -0
- app/services/poetry_generation.py +60 -27
- main.py +28 -21
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.env
|
| 2 |
+
__pycache__/
|
| 3 |
+
__pycache__/main.cpython-312.pyc
|
__pycache__/main.cpython-312.pyc
DELETED
|
Binary file (1.88 kB)
|
|
|
app/services/poetry_generation.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
from typing import Optional, List
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
import logging
|
|
@@ -9,7 +11,8 @@ import concurrent.futures
|
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
class ModelManager:
|
| 15 |
_instance = None
|
|
@@ -22,16 +25,35 @@ class ModelManager:
|
|
| 22 |
|
| 23 |
def __init__(self):
|
| 24 |
if not ModelManager._initialized:
|
| 25 |
-
# Initialize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
| 28 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
model_name,
|
| 30 |
-
|
| 31 |
-
device_map="auto"
|
|
|
|
| 32 |
)
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
ModelManager._initialized = True
|
| 36 |
|
| 37 |
def __del__(self):
|
|
@@ -42,30 +64,23 @@ class ModelManager:
|
|
| 42 |
except Exception as e:
|
| 43 |
logger.error(f"Error during cleanup: {str(e)}")
|
| 44 |
|
| 45 |
-
@lru_cache(maxsize=1)
|
| 46 |
-
def get_hf_token() -> str:
|
| 47 |
-
"""Get Hugging Face token from environment variables."""
|
| 48 |
-
token = os.getenv("HF_TOKEN")
|
| 49 |
-
if not token:
|
| 50 |
-
raise EnvironmentError(
|
| 51 |
-
"HF_TOKEN environment variable not found. "
|
| 52 |
-
"Please set your Hugging Face access token."
|
| 53 |
-
)
|
| 54 |
-
return token
|
| 55 |
-
|
| 56 |
class PoetryGenerationService:
|
| 57 |
def __init__(self):
|
| 58 |
-
# Get model manager instance
|
| 59 |
model_manager = ModelManager()
|
| 60 |
self.model = model_manager.model
|
| 61 |
self.tokenizer = model_manager.tokenizer
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def preload_models(self):
|
| 64 |
"""Preload the models during application startup"""
|
| 65 |
try:
|
| 66 |
-
_ = ModelManager()
|
|
|
|
|
|
|
| 67 |
logger.info("Models preloaded successfully")
|
| 68 |
-
return True
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Error preloading models: {str(e)}")
|
| 71 |
raise Exception("Failed to preload models") from e
|
|
@@ -76,14 +91,25 @@ class PoetryGenerationService:
|
|
| 76 |
temperature: Optional[float] = 0.7,
|
| 77 |
top_p: Optional[float] = 0.9,
|
| 78 |
top_k: Optional[int] = 50,
|
| 79 |
-
max_length: Optional[int] =
|
| 80 |
repetition_penalty: Optional[float] = 1.1
|
| 81 |
) -> str:
|
| 82 |
try:
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
| 85 |
|
| 86 |
-
with torch.no_grad()
|
| 87 |
outputs = self.model.generate(
|
| 88 |
inputs["input_ids"],
|
| 89 |
attention_mask=inputs["attention_mask"],
|
|
@@ -95,6 +121,8 @@ class PoetryGenerationService:
|
|
| 95 |
repetition_penalty=repetition_penalty,
|
| 96 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 97 |
eos_token_id=self.tokenizer.eos_token_id,
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
return self.tokenizer.decode(
|
|
@@ -104,9 +132,14 @@ class PoetryGenerationService:
|
|
| 104 |
)
|
| 105 |
|
| 106 |
except Exception as e:
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
def
|
|
|
|
| 110 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 111 |
-
poems =
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# poetry_generation.py
|
| 2 |
+
import asyncio
|
| 3 |
from typing import Optional, List
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
import logging
|
|
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
+
# Use a smaller model
|
| 15 |
+
model_name = "facebook/opt-125m" # Much smaller than Llama
|
| 16 |
|
| 17 |
class ModelManager:
|
| 18 |
_instance = None
|
|
|
|
| 25 |
|
| 26 |
def __init__(self):
|
| 27 |
if not ModelManager._initialized:
|
| 28 |
+
# Initialize quantization config
|
| 29 |
+
quantization_config = BitsAndBytesConfig(
|
| 30 |
+
load_in_4bit=True,
|
| 31 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Initialize tokenizer and model with quantization
|
| 35 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 37 |
+
|
| 38 |
+
# Load model with optimizations
|
| 39 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
model_name,
|
| 41 |
+
quantization_config=quantization_config,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
torch_dtype=torch.float16
|
| 44 |
)
|
| 45 |
+
|
| 46 |
+
# Enable model optimizations
|
| 47 |
+
self.model.config.use_cache = True
|
| 48 |
+
|
| 49 |
+
# Set model to evaluation mode
|
| 50 |
self.model.eval()
|
| 51 |
+
|
| 52 |
+
# Move model to GPU if available
|
| 53 |
+
if torch.cuda.is_available():
|
| 54 |
+
self.model = self.model.cuda()
|
| 55 |
+
torch.backends.cudnn.benchmark = True
|
| 56 |
+
|
| 57 |
ModelManager._initialized = True
|
| 58 |
|
| 59 |
def __del__(self):
|
|
|
|
| 64 |
except Exception as e:
|
| 65 |
logger.error(f"Error during cleanup: {str(e)}")
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
class PoetryGenerationService:
|
| 68 |
def __init__(self):
|
|
|
|
| 69 |
model_manager = ModelManager()
|
| 70 |
self.model = model_manager.model
|
| 71 |
self.tokenizer = model_manager.tokenizer
|
| 72 |
+
|
| 73 |
+
# Pre-compile common prompt templates
|
| 74 |
+
self.prompt_template = "Write a short poem about {}\n"
|
| 75 |
|
| 76 |
def preload_models(self):
|
| 77 |
"""Preload the models during application startup"""
|
| 78 |
try:
|
| 79 |
+
_ = ModelManager()
|
| 80 |
+
# Warmup generation
|
| 81 |
+
self.generate_poem("warmup")
|
| 82 |
logger.info("Models preloaded successfully")
|
| 83 |
+
return True
|
| 84 |
except Exception as e:
|
| 85 |
logger.error(f"Error preloading models: {str(e)}")
|
| 86 |
raise Exception("Failed to preload models") from e
|
|
|
|
| 91 |
temperature: Optional[float] = 0.7,
|
| 92 |
top_p: Optional[float] = 0.9,
|
| 93 |
top_k: Optional[int] = 50,
|
| 94 |
+
max_length: Optional[int] = 150,
|
| 95 |
repetition_penalty: Optional[float] = 1.1
|
| 96 |
) -> str:
|
| 97 |
try:
|
| 98 |
+
# Format prompt using template
|
| 99 |
+
formatted_prompt = self.prompt_template.format(prompt)
|
| 100 |
+
|
| 101 |
+
# Optimize input processing
|
| 102 |
+
inputs = self.tokenizer(
|
| 103 |
+
formatted_prompt,
|
| 104 |
+
return_tensors="pt",
|
| 105 |
+
padding=True,
|
| 106 |
+
truncation=True,
|
| 107 |
+
max_length=64 # Reduced from 128
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
| 111 |
|
| 112 |
+
with torch.inference_mode(): # Faster than torch.no_grad()
|
| 113 |
outputs = self.model.generate(
|
| 114 |
inputs["input_ids"],
|
| 115 |
attention_mask=inputs["attention_mask"],
|
|
|
|
| 121 |
repetition_penalty=repetition_penalty,
|
| 122 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 123 |
eos_token_id=self.tokenizer.eos_token_id,
|
| 124 |
+
num_beams=1, # Disable beam search for speed
|
| 125 |
+
early_stopping=True
|
| 126 |
)
|
| 127 |
|
| 128 |
return self.tokenizer.decode(
|
|
|
|
| 132 |
)
|
| 133 |
|
| 134 |
except Exception as e:
|
| 135 |
+
logger.error(f"Error generating poem: {str(e)}")
|
| 136 |
+
return f"Error generating poem: {str(e)}"
|
| 137 |
|
| 138 |
+
async def generate_poems_async(self, prompts: List[str]) -> List[str]:
|
| 139 |
+
loop = asyncio.get_event_loop()
|
| 140 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 141 |
+
poems = await asyncio.gather(
|
| 142 |
+
*[loop.run_in_executor(executor, self.generate_poem, prompt)
|
| 143 |
+
for prompt in prompts]
|
| 144 |
+
)
|
| 145 |
+
return poems
|
main.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
|
|
| 1 |
import asyncio
|
| 2 |
from contextlib import asynccontextmanager
|
| 3 |
-
from fastapi import FastAPI
|
| 4 |
from app.api.endpoints.poetry import router as poetry_router
|
| 5 |
import os
|
| 6 |
import logging
|
|
@@ -11,10 +12,11 @@ from huggingface_hub import login
|
|
| 11 |
from functools import lru_cache
|
| 12 |
from app.services.poetry_generation import PoetryGenerationService
|
| 13 |
|
| 14 |
-
# Configure logging once at module level
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
|
|
|
| 18 |
@lru_cache()
|
| 19 |
def get_hf_token() -> str:
|
| 20 |
"""Get Hugging Face token from environment variables."""
|
|
@@ -35,26 +37,29 @@ def init_huggingface():
|
|
| 35 |
except Exception as e:
|
| 36 |
logger.error(f"Failed to login to Hugging Face: {str(e)}")
|
| 37 |
raise
|
| 38 |
-
|
| 39 |
@asynccontextmanager
|
| 40 |
async def lifespan(app: FastAPI):
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
init_huggingface()
|
| 43 |
-
|
| 44 |
# Initialize poetry service and preload models
|
| 45 |
poetry_service = PoetryGenerationService()
|
| 46 |
-
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
except Exception as e:
|
| 54 |
-
logger.error(f"Error
|
| 55 |
raise
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
app = FastAPI(lifespan=lifespan)
|
| 60 |
app.include_router(poetry_router, prefix="/api/v1/poetry")
|
|
@@ -63,14 +68,16 @@ app.include_router(poetry_router, prefix="/api/v1/poetry")
|
|
| 63 |
async def lifecheck():
|
| 64 |
return Response("OK", media_type="text/plain")
|
| 65 |
|
| 66 |
-
def get_port() -> int:
|
| 67 |
-
return int(os.getenv("PORT", "8000"))
|
| 68 |
-
|
| 69 |
if __name__ == "__main__":
|
| 70 |
import uvicorn
|
| 71 |
|
| 72 |
-
port =
|
| 73 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 74 |
|
| 75 |
-
|
| 76 |
-
uvicorn.run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# main.py
|
| 2 |
import asyncio
|
| 3 |
from contextlib import asynccontextmanager
|
| 4 |
+
from fastapi import FastAPI, BackgroundTasks
|
| 5 |
from app.api.endpoints.poetry import router as poetry_router
|
| 6 |
import os
|
| 7 |
import logging
|
|
|
|
| 12 |
from functools import lru_cache
|
| 13 |
from app.services.poetry_generation import PoetryGenerationService
|
| 14 |
|
|
|
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
+
# Global poetry service instance
|
| 19 |
+
poetry_service = None
|
| 20 |
@lru_cache()
|
| 21 |
def get_hf_token() -> str:
|
| 22 |
"""Get Hugging Face token from environment variables."""
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
logger.error(f"Failed to login to Hugging Face: {str(e)}")
|
| 39 |
raise
|
|
|
|
| 40 |
@asynccontextmanager
|
| 41 |
async def lifespan(app: FastAPI):
|
| 42 |
+
global poetry_service
|
| 43 |
+
|
| 44 |
+
# Initialize Hugging Face authentication
|
| 45 |
init_huggingface()
|
| 46 |
+
|
| 47 |
# Initialize poetry service and preload models
|
| 48 |
poetry_service = PoetryGenerationService()
|
| 49 |
+
|
| 50 |
try:
|
| 51 |
+
# Preload models in background
|
| 52 |
+
background_tasks = BackgroundTasks()
|
| 53 |
+
background_tasks.add_task(poetry_service.preload_models)
|
| 54 |
+
|
| 55 |
+
logger.info("Application startup complete")
|
| 56 |
+
yield
|
| 57 |
+
|
| 58 |
except Exception as e:
|
| 59 |
+
logger.error(f"Error during startup: {str(e)}")
|
| 60 |
raise
|
| 61 |
+
finally:
|
| 62 |
+
logger.info("Shutting down application")
|
| 63 |
|
| 64 |
app = FastAPI(lifespan=lifespan)
|
| 65 |
app.include_router(poetry_router, prefix="/api/v1/poetry")
|
|
|
|
| 68 |
async def lifecheck():
|
| 69 |
return Response("OK", media_type="text/plain")
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
if __name__ == "__main__":
|
| 72 |
import uvicorn
|
| 73 |
|
| 74 |
+
port = int(os.getenv("PORT", "8000"))
|
|
|
|
| 75 |
|
| 76 |
+
# Configure uvicorn with optimized settings
|
| 77 |
+
uvicorn.run(
|
| 78 |
+
app,
|
| 79 |
+
host="0.0.0.0",
|
| 80 |
+
port=port,
|
| 81 |
+
loop="uvloop", # Faster event loop implementation
|
| 82 |
+
http="httptools", # Faster HTTP protocol implementation
|
| 83 |
+
)
|