Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ logger = logging.getLogger(__name__)
|
|
| 15 |
# Model configuration
|
| 16 |
MODEL_NAME = "abhilash88/face-emotion-detection"
|
| 17 |
|
| 18 |
-
# Emotion labels mapping
|
| 19 |
EMOTION_LABELS = {
|
| 20 |
'LABEL_0': 'angry',
|
| 21 |
'LABEL_1': 'disgust',
|
|
@@ -76,11 +76,6 @@ def load_models():
|
|
| 76 |
|
| 77 |
logger.info("Emotion detection model loaded successfully")
|
| 78 |
|
| 79 |
-
# Test model to get actual label mapping
|
| 80 |
-
test_image = Image.new('RGB', (224, 224), color='white')
|
| 81 |
-
test_results = emotion_classifier(test_image)
|
| 82 |
-
logger.info(f"Model test result format: {test_results}")
|
| 83 |
-
|
| 84 |
# Load OpenCV face cascade
|
| 85 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 86 |
|
|
@@ -96,21 +91,110 @@ def load_models():
|
|
| 96 |
logger.error(f"Error loading models: {e}")
|
| 97 |
return False
|
| 98 |
|
| 99 |
-
def
|
| 100 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 101 |
try:
|
| 102 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
|
|
| 103 |
faces = face_cascade.detectMultiScale(
|
| 104 |
gray,
|
| 105 |
-
scaleFactor=1.
|
| 106 |
-
minNeighbors=
|
| 107 |
-
minSize=(
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
logger.error(f"Error detecting faces: {e}")
|
| 112 |
return []
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
def predict_emotion(face_image: Image.Image) -> List[Dict]:
|
| 115 |
"""Predict emotion for a single face"""
|
| 116 |
try:
|
|
@@ -118,9 +202,8 @@ def predict_emotion(face_image: Image.Image) -> List[Dict]:
|
|
| 118 |
logger.warning("Emotion classifier not loaded, returning neutral")
|
| 119 |
return [{"label": "neutral", "score": 1.0}]
|
| 120 |
|
| 121 |
-
# Resize image
|
| 122 |
-
|
| 123 |
-
face_image = face_image.resize((224, 224))
|
| 124 |
|
| 125 |
# The pipeline returns results in different formats depending on configuration
|
| 126 |
results = emotion_classifier(face_image)
|
|
@@ -154,54 +237,66 @@ def predict_emotion(face_image: Image.Image) -> List[Dict]:
|
|
| 154 |
logger.error(f"Error predicting emotion: {e}")
|
| 155 |
return [{"label": "neutral", "score": 1.0}]
|
| 156 |
|
| 157 |
-
def draw_emotion_results(image: Image.Image, faces: List, emotions: List) -> Image.Image:
|
| 158 |
"""Draw bounding boxes and emotion labels on the image"""
|
| 159 |
try:
|
| 160 |
draw = ImageDraw.Draw(image)
|
| 161 |
|
| 162 |
# Try to load a font, fallback to default if not available
|
| 163 |
try:
|
| 164 |
-
font = ImageFont.truetype("arial.ttf",
|
| 165 |
except:
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
for i, (x, y, w, h) in enumerate(faces):
|
| 169 |
if i < len(emotions):
|
| 170 |
-
# Get top emotion
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
emotion_label = top_emotion['label']
|
| 173 |
confidence = top_emotion['score']
|
| 174 |
|
| 175 |
# Get color for this emotion
|
| 176 |
color = EMOTION_COLORS.get(emotion_label, '#FFFFFF')
|
| 177 |
|
| 178 |
-
# Draw bounding box
|
| 179 |
-
draw.rectangle([(x, y), (x + w, y + h)], outline=color, width=
|
| 180 |
|
| 181 |
-
# Draw emotion label
|
| 182 |
-
label_text = f"{emotion_label}
|
|
|
|
| 183 |
|
| 184 |
# Calculate text size for background
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
| 188 |
|
| 189 |
# Draw background for text
|
| 190 |
draw.rectangle(
|
| 191 |
-
[(x, y - text_height -
|
| 192 |
fill=color
|
| 193 |
)
|
| 194 |
|
| 195 |
-
# Draw
|
| 196 |
-
draw.text((x +
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
return image
|
| 199 |
except Exception as e:
|
| 200 |
logger.error(f"Error drawing results: {e}")
|
| 201 |
return image
|
| 202 |
|
| 203 |
-
def
|
| 204 |
-
"""Process
|
| 205 |
try:
|
| 206 |
if image is None:
|
| 207 |
return None, "No image provided"
|
|
@@ -209,80 +304,44 @@ def process_single_image(image: Image.Image) -> Tuple[Image.Image, str]:
|
|
| 209 |
# Convert PIL to numpy array
|
| 210 |
image_np = np.array(image)
|
| 211 |
|
| 212 |
-
# Detect faces
|
| 213 |
-
faces =
|
| 214 |
|
| 215 |
if not faces:
|
| 216 |
-
return image, "No faces detected in the image"
|
| 217 |
-
|
| 218 |
-
# Process each face
|
| 219 |
-
emotions_list = []
|
| 220 |
-
for (x, y, w, h) in faces:
|
| 221 |
-
# Extract face region
|
| 222 |
-
face_region = image.crop((x, y, x + w, y + h))
|
| 223 |
-
|
| 224 |
-
# Predict emotion
|
| 225 |
-
emotions = predict_emotion(face_region)
|
| 226 |
-
emotions_list.append(emotions)
|
| 227 |
-
|
| 228 |
-
# Draw results
|
| 229 |
-
result_image = draw_emotion_results(image.copy(), faces, emotions_list)
|
| 230 |
-
|
| 231 |
-
# Create summary text
|
| 232 |
-
summary_lines = [f"Detected {len(faces)} face(s):"]
|
| 233 |
-
for i, emotions in enumerate(emotions_list):
|
| 234 |
-
top_emotion = max(emotions, key=lambda x: x['score'])
|
| 235 |
-
summary_lines.append(f"Face {i+1}: {top_emotion['label']} ({top_emotion['score']:.2f})")
|
| 236 |
-
|
| 237 |
-
summary = "\n".join(summary_lines)
|
| 238 |
-
|
| 239 |
-
return result_image, summary
|
| 240 |
-
|
| 241 |
-
except Exception as e:
|
| 242 |
-
logger.error(f"Error processing image: {e}")
|
| 243 |
-
return image, f"Error processing image: {str(e)}"
|
| 244 |
-
|
| 245 |
-
def process_webcam_frame(image: Image.Image, confidence_threshold: float = 0.5) -> Tuple[Image.Image, str]:
|
| 246 |
-
"""Process webcam frame for emotion detection with confidence threshold"""
|
| 247 |
-
try:
|
| 248 |
-
if image is None:
|
| 249 |
-
return None, "π· No image from camera"
|
| 250 |
-
|
| 251 |
-
# Convert PIL to numpy array
|
| 252 |
-
image_np = np.array(image)
|
| 253 |
-
|
| 254 |
-
# Detect faces
|
| 255 |
-
faces = detect_faces(image_np)
|
| 256 |
-
|
| 257 |
-
if not faces:
|
| 258 |
-
return image, "π€ No faces detected in the camera feed"
|
| 259 |
|
| 260 |
# Process each face
|
| 261 |
emotions_list = []
|
| 262 |
valid_faces = []
|
| 263 |
|
| 264 |
for (x, y, w, h) in faces:
|
| 265 |
-
# Extract face region
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
# Predict emotion
|
| 269 |
emotions = predict_emotion(face_region)
|
| 270 |
|
| 271 |
-
#
|
| 272 |
-
|
| 273 |
|
| 274 |
-
if
|
| 275 |
emotions_list.append(emotions)
|
| 276 |
valid_faces.append((x, y, w, h))
|
| 277 |
|
| 278 |
if not valid_faces:
|
| 279 |
-
return image, f"
|
| 280 |
|
| 281 |
# Draw results
|
| 282 |
-
result_image = draw_emotion_results(image.copy(), valid_faces, emotions_list)
|
| 283 |
|
| 284 |
-
# Create
|
| 285 |
-
summary_lines = [f"
|
| 286 |
|
| 287 |
for i, emotions in enumerate(emotions_list):
|
| 288 |
# Sort emotions by confidence
|
|
@@ -295,14 +354,18 @@ def process_webcam_frame(image: Image.Image, confidence_threshold: float = 0.5)
|
|
| 295 |
'happy': 'π', 'sad': 'π’', 'surprise': 'π²', 'neutral': 'π'
|
| 296 |
}.get(top_emotion['label'], 'π')
|
| 297 |
|
| 298 |
-
summary_lines.append(f"**Face {i+1}:** {emotion_emoji} {top_emotion['label'].title()} ({top_emotion['score']:.
|
| 299 |
|
| 300 |
# Add top 3 emotions for detailed analysis
|
| 301 |
if len(sorted_emotions) > 1:
|
| 302 |
-
summary_lines.append(" π Other emotions:")
|
| 303 |
for emotion in sorted_emotions[1:4]: # Top 3 others
|
| 304 |
if emotion['score'] >= confidence_threshold:
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
summary_lines.append("")
|
| 307 |
|
| 308 |
summary = "\n".join(summary_lines)
|
|
@@ -310,8 +373,8 @@ def process_webcam_frame(image: Image.Image, confidence_threshold: float = 0.5)
|
|
| 310 |
return result_image, summary
|
| 311 |
|
| 312 |
except Exception as e:
|
| 313 |
-
logger.error(f"Error processing
|
| 314 |
-
return image, f"β Error processing
|
| 315 |
|
| 316 |
def analyze_emotions_batch(files) -> str:
|
| 317 |
"""Analyze emotions in multiple uploaded files"""
|
|
@@ -329,11 +392,11 @@ def analyze_emotions_batch(files) -> str:
|
|
| 329 |
# Convert PIL to numpy array
|
| 330 |
image_np = np.array(image)
|
| 331 |
|
| 332 |
-
# Detect faces
|
| 333 |
-
faces =
|
| 334 |
|
| 335 |
if not faces:
|
| 336 |
-
all_results.append(f"File {idx+1} ({file.name}): No faces detected")
|
| 337 |
continue
|
| 338 |
|
| 339 |
# Process each face
|
|
@@ -345,12 +408,12 @@ def analyze_emotions_batch(files) -> str:
|
|
| 345 |
# Predict emotion
|
| 346 |
emotions = predict_emotion(face_region)
|
| 347 |
top_emotion = max(emotions, key=lambda x: x['score'])
|
| 348 |
-
image_emotions.append(f"{top_emotion['label']} ({top_emotion['score']:.
|
| 349 |
|
| 350 |
-
all_results.append(f"File {idx+1} ({file.name}): {', '.join(image_emotions)}")
|
| 351 |
|
| 352 |
except Exception as e:
|
| 353 |
-
all_results.append(f"File {idx+1}: Error processing - {str(e)}")
|
| 354 |
|
| 355 |
return "\n".join(all_results)
|
| 356 |
|
|
@@ -367,22 +430,31 @@ def get_emotion_statistics(image: Image.Image) -> str:
|
|
| 367 |
# Convert PIL to numpy array
|
| 368 |
image_np = np.array(image)
|
| 369 |
|
| 370 |
-
# Detect faces
|
| 371 |
-
faces =
|
| 372 |
|
| 373 |
if not faces:
|
| 374 |
-
return "No faces detected"
|
| 375 |
|
| 376 |
# Collect all emotions
|
| 377 |
all_emotions = {}
|
|
|
|
| 378 |
|
| 379 |
-
for (x, y, w, h) in faces:
|
| 380 |
# Extract face region
|
| 381 |
face_region = image.crop((x, y, x + w, y + h))
|
| 382 |
|
| 383 |
# Predict emotion
|
| 384 |
emotions = predict_emotion(face_region)
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
for emotion_data in emotions:
|
| 387 |
emotion = emotion_data['label']
|
| 388 |
score = emotion_data['score']
|
|
@@ -392,51 +464,57 @@ def get_emotion_statistics(image: Image.Image) -> str:
|
|
| 392 |
all_emotions[emotion].append(score)
|
| 393 |
|
| 394 |
# Calculate statistics
|
| 395 |
-
stats_lines = [f"**Emotion Analysis for {len(faces)} face(s):**\n"]
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
|
|
|
| 401 |
|
| 402 |
-
stats_lines.append(
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
|
|
|
| 406 |
stats_lines.append("")
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
return "\n".join(stats_lines)
|
| 409 |
|
| 410 |
except Exception as e:
|
| 411 |
logger.error(f"Error calculating statistics: {e}")
|
| 412 |
-
return f"Error calculating statistics: {str(e)}"
|
| 413 |
|
| 414 |
-
# Create Gradio interface
|
| 415 |
def create_interface():
|
| 416 |
-
# Custom CSS for modern styling
|
| 417 |
custom_css = """
|
| 418 |
.main-header {
|
| 419 |
text-align: center;
|
| 420 |
color: #2563eb;
|
| 421 |
margin-bottom: 2rem;
|
| 422 |
}
|
| 423 |
-
.
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
padding: 1rem;
|
| 427 |
-
border-radius: 0.5rem;
|
| 428 |
-
margin: 1rem 0;
|
| 429 |
-
}
|
| 430 |
-
.stats-box {
|
| 431 |
-
background: #f8fafc;
|
| 432 |
-
border: 1px solid #e2e8f0;
|
| 433 |
-
border-radius: 0.5rem;
|
| 434 |
-
padding: 1rem;
|
| 435 |
}
|
| 436 |
"""
|
| 437 |
|
| 438 |
with gr.Blocks(
|
| 439 |
-
title="
|
| 440 |
theme=gr.themes.Soft(),
|
| 441 |
css=custom_css
|
| 442 |
) as iface:
|
|
@@ -444,103 +522,70 @@ def create_interface():
|
|
| 444 |
# Header
|
| 445 |
gr.Markdown(
|
| 446 |
"""
|
| 447 |
-
# π
|
| 448 |
|
| 449 |
-
###
|
| 450 |
|
| 451 |
-
This
|
| 452 |
-
|
| 453 |
""",
|
| 454 |
elem_classes=["main-header"]
|
| 455 |
)
|
| 456 |
|
| 457 |
-
with gr.Tab("
|
| 458 |
with gr.Row():
|
| 459 |
with gr.Column(scale=1):
|
| 460 |
-
|
| 461 |
label="Upload Image",
|
| 462 |
type="pil",
|
| 463 |
height=400
|
| 464 |
)
|
| 465 |
-
analyze_single_btn = gr.Button("Analyze Emotions", variant="primary", size="lg")
|
| 466 |
-
|
| 467 |
-
with gr.Column(scale=1):
|
| 468 |
-
single_image_output = gr.Image(
|
| 469 |
-
label="Emotion Detection Results",
|
| 470 |
-
height=400
|
| 471 |
-
)
|
| 472 |
-
single_result_text = gr.Textbox(
|
| 473 |
-
label="Detection Summary",
|
| 474 |
-
lines=5,
|
| 475 |
-
show_copy_button=True
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
with gr.Tab("π₯ Live Webcam Detection"):
|
| 479 |
-
gr.Markdown(
|
| 480 |
-
"""
|
| 481 |
-
### Real-time Emotion Detection
|
| 482 |
-
Use your camera for live emotion detection! The system will automatically process frames as you capture them.
|
| 483 |
-
"""
|
| 484 |
-
)
|
| 485 |
-
|
| 486 |
-
with gr.Row():
|
| 487 |
-
with gr.Column(scale=1):
|
| 488 |
-
# Use Image component with webcam source for live detection
|
| 489 |
-
webcam_input = gr.Image(
|
| 490 |
-
label="πΉ Live Camera Feed",
|
| 491 |
-
type="pil",
|
| 492 |
-
height=400,
|
| 493 |
-
sources=["webcam"],
|
| 494 |
-
streaming=False # We'll handle updates manually
|
| 495 |
-
)
|
| 496 |
|
| 497 |
with gr.Row():
|
| 498 |
-
|
| 499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
-
|
| 502 |
-
auto_detect_checkbox = gr.Checkbox(
|
| 503 |
-
label="π Auto-detect on camera change",
|
| 504 |
-
value=True,
|
| 505 |
-
info="Automatically analyze when camera input changes"
|
| 506 |
-
)
|
| 507 |
|
| 508 |
with gr.Column(scale=1):
|
| 509 |
-
|
| 510 |
-
label="
|
| 511 |
height=400
|
| 512 |
)
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
show_copy_button=True,
|
| 518 |
-
placeholder="Start detection to see emotion analysis..."
|
| 519 |
-
)
|
| 520 |
-
|
| 521 |
-
# Confidence threshold slider
|
| 522 |
-
confidence_threshold = gr.Slider(
|
| 523 |
-
minimum=0.1,
|
| 524 |
-
maximum=1.0,
|
| 525 |
-
value=0.5,
|
| 526 |
-
step=0.1,
|
| 527 |
-
label="ποΈ Confidence Threshold",
|
| 528 |
-
info="Minimum confidence to display emotions"
|
| 529 |
)
|
| 530 |
|
| 531 |
with gr.Tab("π Detailed Statistics"):
|
| 532 |
with gr.Row():
|
| 533 |
with gr.Column(scale=1):
|
| 534 |
stats_image_input = gr.Image(
|
| 535 |
-
label="Upload Image for Analysis",
|
| 536 |
type="pil",
|
| 537 |
height=400
|
| 538 |
)
|
| 539 |
-
analyze_stats_btn = gr.Button("Generate Statistics", variant="primary", size="lg")
|
| 540 |
|
| 541 |
with gr.Column(scale=1):
|
| 542 |
stats_output = gr.Markdown(
|
| 543 |
-
value="Upload an image and click 'Generate Statistics' to see
|
| 544 |
label="Emotion Statistics"
|
| 545 |
)
|
| 546 |
|
|
@@ -551,169 +596,128 @@ def create_interface():
|
|
| 551 |
file_count="multiple",
|
| 552 |
file_types=["image"]
|
| 553 |
)
|
| 554 |
-
batch_process_btn = gr.Button("Process
|
| 555 |
batch_results_output = gr.Textbox(
|
| 556 |
label="Batch Processing Results",
|
| 557 |
-
lines=
|
| 558 |
show_copy_button=True
|
| 559 |
)
|
| 560 |
|
| 561 |
-
with gr.Tab("
|
| 562 |
gr.Markdown(
|
| 563 |
"""
|
| 564 |
-
##
|
| 565 |
-
|
| 566 |
-
This face emotion detection system uses a fine-tuned deep learning model specifically trained
|
| 567 |
-
for emotion recognition. The model can detect 7 different emotional states with high accuracy.
|
| 568 |
|
| 569 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
-
|
| 572 |
-
-
|
| 573 |
-
-
|
| 574 |
-
-
|
| 575 |
-
- π’ **Sad** - Expressions of sadness, sorrow, or melancholy
|
| 576 |
-
- π² **Surprise** - Expressions of surprise, shock, or amazement
|
| 577 |
-
- π **Neutral** - Calm, neutral expressions with no strong emotion
|
| 578 |
|
| 579 |
-
###
|
|
|
|
|
|
|
|
|
|
| 580 |
|
| 581 |
-
|
| 582 |
-
- **Architecture:** Deep convolutional neural network
|
| 583 |
-
- **Training:** Specialized dataset for facial emotion recognition
|
| 584 |
-
- **Face Detection:** OpenCV Haar Cascade classifier
|
| 585 |
-
- **Real-time Processing:** Optimized for live webcam inference
|
| 586 |
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
- **
|
| 590 |
-
- **
|
| 591 |
-
- **
|
| 592 |
-
- **
|
| 593 |
-
- **
|
| 594 |
-
- **Security:** Detect emotional distress or suspicious behavior
|
| 595 |
|
| 596 |
-
|
| 597 |
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
|
|
|
| 602 |
|
| 603 |
-
|
| 604 |
|
| 605 |
-
-
|
| 606 |
-
-
|
| 607 |
-
-
|
| 608 |
-
- Multiple
|
| 609 |
|
| 610 |
---
|
| 611 |
|
| 612 |
-
**Model
|
| 613 |
-
|
| 614 |
-
Made with β€οΈ for emotion AI research and applications
|
| 615 |
"""
|
| 616 |
)
|
| 617 |
|
| 618 |
# Event handlers
|
| 619 |
-
|
| 620 |
-
fn=
|
| 621 |
-
inputs=
|
| 622 |
-
outputs=[
|
| 623 |
-
api_name="
|
| 624 |
-
)
|
| 625 |
-
|
| 626 |
-
# Live webcam detection handlers
|
| 627 |
-
start_detection_btn.click(
|
| 628 |
-
fn=process_webcam_frame,
|
| 629 |
-
inputs=[webcam_input, confidence_threshold],
|
| 630 |
-
outputs=[webcam_output, webcam_result_text],
|
| 631 |
-
api_name="start_detection"
|
| 632 |
-
)
|
| 633 |
-
|
| 634 |
-
# Auto-detection when camera input changes
|
| 635 |
-
webcam_input.change(
|
| 636 |
-
fn=lambda img, auto, threshold: process_webcam_frame(img, threshold) if auto and img is not None else (None, "Auto-detection disabled or no image"),
|
| 637 |
-
inputs=[webcam_input, auto_detect_checkbox, confidence_threshold],
|
| 638 |
-
outputs=[webcam_output, webcam_result_text]
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
stop_detection_btn.click(
|
| 642 |
-
fn=lambda: (None, "π Detection stopped"),
|
| 643 |
-
outputs=[webcam_output, webcam_result_text]
|
| 644 |
)
|
| 645 |
|
| 646 |
analyze_stats_btn.click(
|
| 647 |
fn=get_emotion_statistics,
|
| 648 |
inputs=stats_image_input,
|
| 649 |
outputs=stats_output,
|
| 650 |
-
api_name="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
)
|
| 652 |
|
| 653 |
-
# Example images
|
| 654 |
gr.Examples(
|
| 655 |
examples=[
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
["https://images.unsplash.com/photo-1552374196-c4e7ffc6e126?w=400&h=400&fit=crop&crop=face"], # Surprised expression
|
| 660 |
-
["https://images.unsplash.com/photo-1619895862022-09114b41f16f?w=400&h=400&fit=crop&crop=face"], # Neutral expression
|
| 661 |
-
["https://images.unsplash.com/photo-1506794778202-cad84cf45f1d?w=400&h=400&fit=crop&crop=face"], # Confident look
|
| 662 |
-
["https://images.unsplash.com/photo-1438761681033-6461ffad8d80?w=400&h=400&fit=crop&crop=face"], # Friendly smile
|
| 663 |
-
["https://images.unsplash.com/photo-1472099645785-5658abf4ff4e?w=400&h=400&fit=crop&crop=face"], # Professional headshot
|
| 664 |
],
|
| 665 |
-
inputs=
|
| 666 |
-
label="πΌοΈ Try these example images
|
| 667 |
-
cache_examples=False
|
| 668 |
)
|
| 669 |
|
| 670 |
return iface
|
| 671 |
|
| 672 |
# Initialize and launch
|
| 673 |
if __name__ == "__main__":
|
| 674 |
-
|
| 675 |
-
logger.info("Initializing Face Emotion Detection System...")
|
| 676 |
|
| 677 |
if load_models():
|
| 678 |
logger.info("Models loaded successfully!")
|
| 679 |
|
| 680 |
-
# Test the model with a simple image
|
| 681 |
-
try:
|
| 682 |
-
# Create a test image
|
| 683 |
-
test_image = Image.new('RGB', (224, 224), color='white')
|
| 684 |
-
test_result = predict_emotion(test_image)
|
| 685 |
-
logger.info(f"Model test successful. Result format: {type(test_result)}")
|
| 686 |
-
logger.info(f"Test result: {test_result}")
|
| 687 |
-
except Exception as e:
|
| 688 |
-
logger.error(f"Model test failed: {e}")
|
| 689 |
-
|
| 690 |
-
# Create interface
|
| 691 |
iface = create_interface()
|
| 692 |
|
| 693 |
-
# Launch
|
| 694 |
iface.launch(
|
| 695 |
share=False,
|
| 696 |
show_error=True,
|
| 697 |
server_name="0.0.0.0",
|
| 698 |
server_port=7860,
|
| 699 |
-
favicon_path=None,
|
| 700 |
show_api=True
|
| 701 |
)
|
| 702 |
else:
|
| 703 |
logger.error("Failed to load models. Please check your model configuration.")
|
| 704 |
-
# Create a simple interface to show the error
|
| 705 |
with gr.Blocks() as error_iface:
|
| 706 |
gr.Markdown(
|
| 707 |
"""
|
| 708 |
# β οΈ Model Loading Error
|
| 709 |
|
| 710 |
-
The emotion detection model failed to load.
|
| 711 |
-
|
| 712 |
-
1. Network connectivity issues
|
| 713 |
-
2. Model compatibility problems
|
| 714 |
-
3. Missing dependencies
|
| 715 |
|
| 716 |
-
|
|
|
|
|
|
|
| 717 |
"""
|
| 718 |
)
|
| 719 |
|
|
|
|
| 15 |
# Model configuration
|
| 16 |
MODEL_NAME = "abhilash88/face-emotion-detection"
|
| 17 |
|
| 18 |
+
# Emotion labels mapping
|
| 19 |
EMOTION_LABELS = {
|
| 20 |
'LABEL_0': 'angry',
|
| 21 |
'LABEL_1': 'disgust',
|
|
|
|
| 76 |
|
| 77 |
logger.info("Emotion detection model loaded successfully")
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# Load OpenCV face cascade
|
| 80 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 81 |
|
|
|
|
| 91 |
logger.error(f"Error loading models: {e}")
|
| 92 |
return False
|
| 93 |
|
| 94 |
+
def detect_faces_improved(image: np.ndarray, min_face_size: int = 80) -> List[Tuple[int, int, int, int]]:
|
| 95 |
+
"""
|
| 96 |
+
Improved face detection with better parameters to reduce false positives
|
| 97 |
+
and merge overlapping detections
|
| 98 |
+
"""
|
| 99 |
try:
|
| 100 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 101 |
+
|
| 102 |
+
# Use more strict parameters to reduce false positives
|
| 103 |
faces = face_cascade.detectMultiScale(
|
| 104 |
gray,
|
| 105 |
+
scaleFactor=1.05, # Smaller scale factor for more careful detection
|
| 106 |
+
minNeighbors=8, # Higher min neighbors to be more strict
|
| 107 |
+
minSize=(min_face_size, min_face_size), # Larger minimum size
|
| 108 |
+
maxSize=(int(min(image.shape[:2]) * 0.8), int(min(image.shape[:2]) * 0.8)), # Maximum size
|
| 109 |
+
flags=cv2.CASCADE_SCALE_IMAGE | cv2.CASCADE_DO_CANNY_PRUNING
|
| 110 |
)
|
| 111 |
+
|
| 112 |
+
if len(faces) == 0:
|
| 113 |
+
return []
|
| 114 |
+
|
| 115 |
+
# Convert to list and merge overlapping detections
|
| 116 |
+
faces_list = faces.tolist()
|
| 117 |
+
merged_faces = merge_overlapping_faces(faces_list)
|
| 118 |
+
|
| 119 |
+
# Filter faces that are too small relative to image size
|
| 120 |
+
image_area = image.shape[0] * image.shape[1]
|
| 121 |
+
filtered_faces = []
|
| 122 |
+
|
| 123 |
+
for (x, y, w, h) in merged_faces:
|
| 124 |
+
face_area = w * h
|
| 125 |
+
# Face should be at least 0.5% of image area but not more than 80%
|
| 126 |
+
if 0.005 < (face_area / image_area) < 0.8:
|
| 127 |
+
# Additional validation: check aspect ratio (faces are roughly square)
|
| 128 |
+
aspect_ratio = w / h
|
| 129 |
+
if 0.7 <= aspect_ratio <= 1.4: # Allow some variance but not extreme rectangles
|
| 130 |
+
filtered_faces.append((x, y, w, h))
|
| 131 |
+
|
| 132 |
+
return filtered_faces
|
| 133 |
+
|
| 134 |
except Exception as e:
|
| 135 |
logger.error(f"Error detecting faces: {e}")
|
| 136 |
return []
|
| 137 |
|
| 138 |
+
def merge_overlapping_faces(faces: List[Tuple[int, int, int, int]], overlap_threshold: float = 0.3) -> List[Tuple[int, int, int, int]]:
|
| 139 |
+
"""
|
| 140 |
+
Merge overlapping face detections to avoid duplicates
|
| 141 |
+
"""
|
| 142 |
+
if len(faces) <= 1:
|
| 143 |
+
return faces
|
| 144 |
+
|
| 145 |
+
# Calculate IoU (Intersection over Union) for all pairs
|
| 146 |
+
merged = []
|
| 147 |
+
used = [False] * len(faces)
|
| 148 |
+
|
| 149 |
+
for i in range(len(faces)):
|
| 150 |
+
if used[i]:
|
| 151 |
+
continue
|
| 152 |
+
|
| 153 |
+
current_face = faces[i]
|
| 154 |
+
merged_face = list(current_face)
|
| 155 |
+
count = 1
|
| 156 |
+
used[i] = True
|
| 157 |
+
|
| 158 |
+
for j in range(i + 1, len(faces)):
|
| 159 |
+
if used[j]:
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
if calculate_iou(current_face, faces[j]) > overlap_threshold:
|
| 163 |
+
# Merge by averaging coordinates
|
| 164 |
+
merged_face[0] = (merged_face[0] * count + faces[j][0]) // (count + 1)
|
| 165 |
+
merged_face[1] = (merged_face[1] * count + faces[j][1]) // (count + 1)
|
| 166 |
+
merged_face[2] = (merged_face[2] * count + faces[j][2]) // (count + 1)
|
| 167 |
+
merged_face[3] = (merged_face[3] * count + faces[j][3]) // (count + 1)
|
| 168 |
+
count += 1
|
| 169 |
+
used[j] = True
|
| 170 |
+
|
| 171 |
+
merged.append(tuple(merged_face))
|
| 172 |
+
|
| 173 |
+
return merged
|
| 174 |
+
|
| 175 |
+
def calculate_iou(box1: Tuple[int, int, int, int], box2: Tuple[int, int, int, int]) -> float:
|
| 176 |
+
"""Calculate Intersection over Union of two bounding boxes"""
|
| 177 |
+
x1, y1, w1, h1 = box1
|
| 178 |
+
x2, y2, w2, h2 = box2
|
| 179 |
+
|
| 180 |
+
# Calculate intersection
|
| 181 |
+
x_left = max(x1, x2)
|
| 182 |
+
y_top = max(y1, y2)
|
| 183 |
+
x_right = min(x1 + w1, x2 + w2)
|
| 184 |
+
y_bottom = min(y1 + h1, y2 + h2)
|
| 185 |
+
|
| 186 |
+
if x_right < x_left or y_bottom < y_top:
|
| 187 |
+
return 0.0
|
| 188 |
+
|
| 189 |
+
intersection = (x_right - x_left) * (y_bottom - y_top)
|
| 190 |
+
|
| 191 |
+
# Calculate union
|
| 192 |
+
area1 = w1 * h1
|
| 193 |
+
area2 = w2 * h2
|
| 194 |
+
union = area1 + area2 - intersection
|
| 195 |
+
|
| 196 |
+
return intersection / union if union > 0 else 0.0
|
| 197 |
+
|
| 198 |
def predict_emotion(face_image: Image.Image) -> List[Dict]:
|
| 199 |
"""Predict emotion for a single face"""
|
| 200 |
try:
|
|
|
|
| 202 |
logger.warning("Emotion classifier not loaded, returning neutral")
|
| 203 |
return [{"label": "neutral", "score": 1.0}]
|
| 204 |
|
| 205 |
+
# Resize image for better performance and consistency
|
| 206 |
+
face_image = face_image.resize((224, 224))
|
|
|
|
| 207 |
|
| 208 |
# The pipeline returns results in different formats depending on configuration
|
| 209 |
results = emotion_classifier(face_image)
|
|
|
|
| 237 |
logger.error(f"Error predicting emotion: {e}")
|
| 238 |
return [{"label": "neutral", "score": 1.0}]
|
| 239 |
|
| 240 |
+
def draw_emotion_results(image: Image.Image, faces: List, emotions: List, confidence_threshold: float = 0.5) -> Image.Image:
|
| 241 |
"""Draw bounding boxes and emotion labels on the image"""
|
| 242 |
try:
|
| 243 |
draw = ImageDraw.Draw(image)
|
| 244 |
|
| 245 |
# Try to load a font, fallback to default if not available
|
| 246 |
try:
|
| 247 |
+
font = ImageFont.truetype("arial.ttf", 20)
|
| 248 |
except:
|
| 249 |
+
try:
|
| 250 |
+
font = ImageFont.truetype("DejaVuSans.ttf", 20)
|
| 251 |
+
except:
|
| 252 |
+
font = ImageFont.load_default()
|
| 253 |
|
| 254 |
for i, (x, y, w, h) in enumerate(faces):
|
| 255 |
if i < len(emotions):
|
| 256 |
+
# Get top emotion above threshold
|
| 257 |
+
valid_emotions = [e for e in emotions[i] if e['score'] >= confidence_threshold]
|
| 258 |
+
if not valid_emotions:
|
| 259 |
+
continue
|
| 260 |
+
|
| 261 |
+
top_emotion = max(valid_emotions, key=lambda x: x['score'])
|
| 262 |
emotion_label = top_emotion['label']
|
| 263 |
confidence = top_emotion['score']
|
| 264 |
|
| 265 |
# Get color for this emotion
|
| 266 |
color = EMOTION_COLORS.get(emotion_label, '#FFFFFF')
|
| 267 |
|
| 268 |
+
# Draw bounding box with thicker line
|
| 269 |
+
draw.rectangle([(x, y), (x + w, y + h)], outline=color, width=4)
|
| 270 |
|
| 271 |
+
# Draw emotion label with better formatting
|
| 272 |
+
label_text = f"{emotion_label.upper()}"
|
| 273 |
+
confidence_text = f"{confidence:.1%}"
|
| 274 |
|
| 275 |
# Calculate text size for background
|
| 276 |
+
bbox1 = draw.textbbox((0, 0), label_text, font=font)
|
| 277 |
+
bbox2 = draw.textbbox((0, 0), confidence_text, font=font)
|
| 278 |
+
text_width = max(bbox1[2] - bbox1[0], bbox2[2] - bbox2[0]) + 20
|
| 279 |
+
text_height = (bbox1[3] - bbox1[1]) + (bbox2[3] - bbox2[1]) + 15
|
| 280 |
|
| 281 |
# Draw background for text
|
| 282 |
draw.rectangle(
|
| 283 |
+
[(x, y - text_height - 10), (x + text_width, y)],
|
| 284 |
fill=color
|
| 285 |
)
|
| 286 |
|
| 287 |
+
# Draw emotion label
|
| 288 |
+
draw.text((x + 10, y - text_height - 5), label_text, fill='white', font=font)
|
| 289 |
+
|
| 290 |
+
# Draw confidence
|
| 291 |
+
draw.text((x + 10, y - text_height + 20), confidence_text, fill='white', font=font)
|
| 292 |
|
| 293 |
return image
|
| 294 |
except Exception as e:
|
| 295 |
logger.error(f"Error drawing results: {e}")
|
| 296 |
return image
|
| 297 |
|
| 298 |
+
def process_image(image: Image.Image, confidence_threshold: float = 0.5, min_face_size: int = 80) -> Tuple[Image.Image, str]:
|
| 299 |
+
"""Process an image for emotion detection with improved face detection"""
|
| 300 |
try:
|
| 301 |
if image is None:
|
| 302 |
return None, "No image provided"
|
|
|
|
| 304 |
# Convert PIL to numpy array
|
| 305 |
image_np = np.array(image)
|
| 306 |
|
| 307 |
+
# Detect faces with improved method
|
| 308 |
+
faces = detect_faces_improved(image_np, min_face_size)
|
| 309 |
|
| 310 |
if not faces:
|
| 311 |
+
return image, "β No faces detected in the image. Try adjusting the minimum face size or use an image with clearer faces."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
# Process each face
|
| 314 |
emotions_list = []
|
| 315 |
valid_faces = []
|
| 316 |
|
| 317 |
for (x, y, w, h) in faces:
|
| 318 |
+
# Extract face region with some padding
|
| 319 |
+
padding = max(10, min(w, h) // 10)
|
| 320 |
+
x_pad = max(0, x - padding)
|
| 321 |
+
y_pad = max(0, y - padding)
|
| 322 |
+
w_pad = min(image.width - x_pad, w + 2 * padding)
|
| 323 |
+
h_pad = min(image.height - y_pad, h + 2 * padding)
|
| 324 |
+
|
| 325 |
+
face_region = image.crop((x_pad, y_pad, x_pad + w_pad, y_pad + h_pad))
|
| 326 |
|
| 327 |
# Predict emotion
|
| 328 |
emotions = predict_emotion(face_region)
|
| 329 |
|
| 330 |
+
# Check if any emotion meets the confidence threshold
|
| 331 |
+
valid_emotions = [e for e in emotions if e['score'] >= confidence_threshold]
|
| 332 |
|
| 333 |
+
if valid_emotions:
|
| 334 |
emotions_list.append(emotions)
|
| 335 |
valid_faces.append((x, y, w, h))
|
| 336 |
|
| 337 |
if not valid_faces:
|
| 338 |
+
return image, f"β οΈ {len(faces)} face(s) detected but no emotions above {confidence_threshold:.1f} confidence threshold. Try lowering the threshold."
|
| 339 |
|
| 340 |
# Draw results
|
| 341 |
+
result_image = draw_emotion_results(image.copy(), valid_faces, emotions_list, confidence_threshold)
|
| 342 |
|
| 343 |
+
# Create summary text
|
| 344 |
+
summary_lines = [f"β
**Successfully detected {len(valid_faces)} face(s) with confident emotion predictions:**\n"]
|
| 345 |
|
| 346 |
for i, emotions in enumerate(emotions_list):
|
| 347 |
# Sort emotions by confidence
|
|
|
|
| 354 |
'happy': 'π', 'sad': 'π’', 'surprise': 'π²', 'neutral': 'π'
|
| 355 |
}.get(top_emotion['label'], 'π')
|
| 356 |
|
| 357 |
+
summary_lines.append(f"**Face {i+1}:** {emotion_emoji} **{top_emotion['label'].title()}** ({top_emotion['score']:.1%} confidence)")
|
| 358 |
|
| 359 |
# Add top 3 emotions for detailed analysis
|
| 360 |
if len(sorted_emotions) > 1:
|
| 361 |
+
summary_lines.append(" π Other detected emotions:")
|
| 362 |
for emotion in sorted_emotions[1:4]: # Top 3 others
|
| 363 |
if emotion['score'] >= confidence_threshold:
|
| 364 |
+
emoji = {
|
| 365 |
+
'angry': 'π ', 'disgust': 'π€’', 'fear': 'π¨',
|
| 366 |
+
'happy': 'π', 'sad': 'π’', 'surprise': 'π²', 'neutral': 'π'
|
| 367 |
+
}.get(emotion['label'], 'π')
|
| 368 |
+
summary_lines.append(f" β’ {emoji} {emotion['label'].title()}: {emotion['score']:.1%}")
|
| 369 |
summary_lines.append("")
|
| 370 |
|
| 371 |
summary = "\n".join(summary_lines)
|
|
|
|
| 373 |
return result_image, summary
|
| 374 |
|
| 375 |
except Exception as e:
|
| 376 |
+
logger.error(f"Error processing image: {e}")
|
| 377 |
+
return image, f"β Error processing image: {str(e)}"
|
| 378 |
|
| 379 |
def analyze_emotions_batch(files) -> str:
|
| 380 |
"""Analyze emotions in multiple uploaded files"""
|
|
|
|
| 392 |
# Convert PIL to numpy array
|
| 393 |
image_np = np.array(image)
|
| 394 |
|
| 395 |
+
# Detect faces with improved method
|
| 396 |
+
faces = detect_faces_improved(image_np)
|
| 397 |
|
| 398 |
if not faces:
|
| 399 |
+
all_results.append(f"π File {idx+1} ({file.name}): No faces detected")
|
| 400 |
continue
|
| 401 |
|
| 402 |
# Process each face
|
|
|
|
| 408 |
# Predict emotion
|
| 409 |
emotions = predict_emotion(face_region)
|
| 410 |
top_emotion = max(emotions, key=lambda x: x['score'])
|
| 411 |
+
image_emotions.append(f"{top_emotion['label']} ({top_emotion['score']:.1%})")
|
| 412 |
|
| 413 |
+
all_results.append(f"π File {idx+1} ({file.name}): {len(faces)} face(s) - {', '.join(image_emotions)}")
|
| 414 |
|
| 415 |
except Exception as e:
|
| 416 |
+
all_results.append(f"π File {idx+1}: Error processing - {str(e)}")
|
| 417 |
|
| 418 |
return "\n".join(all_results)
|
| 419 |
|
|
|
|
| 430 |
# Convert PIL to numpy array
|
| 431 |
image_np = np.array(image)
|
| 432 |
|
| 433 |
+
# Detect faces with improved method
|
| 434 |
+
faces = detect_faces_improved(image_np)
|
| 435 |
|
| 436 |
if not faces:
|
| 437 |
+
return "β No faces detected in the image"
|
| 438 |
|
| 439 |
# Collect all emotions
|
| 440 |
all_emotions = {}
|
| 441 |
+
face_details = []
|
| 442 |
|
| 443 |
+
for i, (x, y, w, h) in enumerate(faces):
|
| 444 |
# Extract face region
|
| 445 |
face_region = image.crop((x, y, x + w, y + h))
|
| 446 |
|
| 447 |
# Predict emotion
|
| 448 |
emotions = predict_emotion(face_region)
|
| 449 |
|
| 450 |
+
# Store face details
|
| 451 |
+
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
|
| 452 |
+
face_details.append({
|
| 453 |
+
'face_num': i + 1,
|
| 454 |
+
'position': (x, y, w, h),
|
| 455 |
+
'emotions': sorted_emotions
|
| 456 |
+
})
|
| 457 |
+
|
| 458 |
for emotion_data in emotions:
|
| 459 |
emotion = emotion_data['label']
|
| 460 |
score = emotion_data['score']
|
|
|
|
| 464 |
all_emotions[emotion].append(score)
|
| 465 |
|
| 466 |
# Calculate statistics
|
| 467 |
+
stats_lines = [f"π **Detailed Emotion Analysis for {len(faces)} face(s):**\n"]
|
| 468 |
|
| 469 |
+
# Per-face breakdown
|
| 470 |
+
for face_detail in face_details:
|
| 471 |
+
stats_lines.append(f"### π€ Face {face_detail['face_num']}:")
|
| 472 |
+
top_emotion = face_detail['emotions'][0]
|
| 473 |
+
stats_lines.append(f"**Primary emotion:** {top_emotion['label'].title()} ({top_emotion['score']:.1%})")
|
| 474 |
|
| 475 |
+
stats_lines.append("**All emotions detected:**")
|
| 476 |
+
for emotion in face_detail['emotions']:
|
| 477 |
+
bar_length = int(emotion['score'] * 20) # Scale to 20 chars
|
| 478 |
+
bar = "β" * bar_length + "β" * (20 - bar_length)
|
| 479 |
+
stats_lines.append(f" {emotion['label'].title()}: {bar} {emotion['score']:.1%}")
|
| 480 |
stats_lines.append("")
|
| 481 |
|
| 482 |
+
# Overall statistics
|
| 483 |
+
if len(faces) > 1:
|
| 484 |
+
stats_lines.append("### π Overall Statistics:")
|
| 485 |
+
for emotion, scores in all_emotions.items():
|
| 486 |
+
avg_score = np.mean(scores)
|
| 487 |
+
max_score = np.max(scores)
|
| 488 |
+
count = len(scores)
|
| 489 |
+
|
| 490 |
+
stats_lines.append(f"**{emotion.title()}:**")
|
| 491 |
+
stats_lines.append(f" - Average confidence: {avg_score:.1%}")
|
| 492 |
+
stats_lines.append(f" - Maximum confidence: {max_score:.1%}")
|
| 493 |
+
stats_lines.append(f" - Faces showing this emotion: {count}/{len(faces)}")
|
| 494 |
+
stats_lines.append("")
|
| 495 |
+
|
| 496 |
return "\n".join(stats_lines)
|
| 497 |
|
| 498 |
except Exception as e:
|
| 499 |
logger.error(f"Error calculating statistics: {e}")
|
| 500 |
+
return f"β Error calculating statistics: {str(e)}"
|
| 501 |
|
| 502 |
+
# Create simplified Gradio interface
|
| 503 |
def create_interface():
|
|
|
|
| 504 |
custom_css = """
|
| 505 |
.main-header {
|
| 506 |
text-align: center;
|
| 507 |
color: #2563eb;
|
| 508 |
margin-bottom: 2rem;
|
| 509 |
}
|
| 510 |
+
.gradio-container {
|
| 511 |
+
max-width: 1200px;
|
| 512 |
+
margin: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
}
|
| 514 |
"""
|
| 515 |
|
| 516 |
with gr.Blocks(
|
| 517 |
+
title="Face Emotion Detection - Improved",
|
| 518 |
theme=gr.themes.Soft(),
|
| 519 |
css=custom_css
|
| 520 |
) as iface:
|
|
|
|
| 522 |
# Header
|
| 523 |
gr.Markdown(
|
| 524 |
"""
|
| 525 |
+
# π Face Emotion Detection (Improved)
|
| 526 |
|
| 527 |
+
### Accurate emotion recognition with enhanced face detection
|
| 528 |
|
| 529 |
+
This improved version includes better face detection algorithms to reduce false positives
|
| 530 |
+
and provides more accurate emotion classification for detected faces.
|
| 531 |
""",
|
| 532 |
elem_classes=["main-header"]
|
| 533 |
)
|
| 534 |
|
| 535 |
+
with gr.Tab("πΌοΈ Single Image Analysis"):
|
| 536 |
with gr.Row():
|
| 537 |
with gr.Column(scale=1):
|
| 538 |
+
image_input = gr.Image(
|
| 539 |
label="Upload Image",
|
| 540 |
type="pil",
|
| 541 |
height=400
|
| 542 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
|
| 544 |
with gr.Row():
|
| 545 |
+
confidence_slider = gr.Slider(
|
| 546 |
+
minimum=0.1,
|
| 547 |
+
maximum=1.0,
|
| 548 |
+
value=0.5,
|
| 549 |
+
step=0.1,
|
| 550 |
+
label="π― Confidence Threshold",
|
| 551 |
+
info="Minimum confidence to display emotions"
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
face_size_slider = gr.Slider(
|
| 555 |
+
minimum=30,
|
| 556 |
+
maximum=200,
|
| 557 |
+
value=80,
|
| 558 |
+
step=10,
|
| 559 |
+
label="π€ Minimum Face Size",
|
| 560 |
+
info="Minimum face size (pixels) to detect"
|
| 561 |
+
)
|
| 562 |
|
| 563 |
+
analyze_btn = gr.Button("π Analyze Emotions", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
| 565 |
with gr.Column(scale=1):
|
| 566 |
+
output_image = gr.Image(
|
| 567 |
+
label="Emotion Detection Results",
|
| 568 |
height=400
|
| 569 |
)
|
| 570 |
+
result_text = gr.Textbox(
|
| 571 |
+
label="Detection Results",
|
| 572 |
+
lines=8,
|
| 573 |
+
show_copy_button=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
)
|
| 575 |
|
| 576 |
with gr.Tab("π Detailed Statistics"):
|
| 577 |
with gr.Row():
|
| 578 |
with gr.Column(scale=1):
|
| 579 |
stats_image_input = gr.Image(
|
| 580 |
+
label="Upload Image for Statistical Analysis",
|
| 581 |
type="pil",
|
| 582 |
height=400
|
| 583 |
)
|
| 584 |
+
analyze_stats_btn = gr.Button("π Generate Detailed Statistics", variant="primary", size="lg")
|
| 585 |
|
| 586 |
with gr.Column(scale=1):
|
| 587 |
stats_output = gr.Markdown(
|
| 588 |
+
value="Upload an image and click 'Generate Detailed Statistics' to see comprehensive emotion analysis...",
|
| 589 |
label="Emotion Statistics"
|
| 590 |
)
|
| 591 |
|
|
|
|
| 596 |
file_count="multiple",
|
| 597 |
file_types=["image"]
|
| 598 |
)
|
| 599 |
+
batch_process_btn = gr.Button("β‘ Process All Images", variant="primary", size="lg")
|
| 600 |
batch_results_output = gr.Textbox(
|
| 601 |
label="Batch Processing Results",
|
| 602 |
+
lines=15,
|
| 603 |
show_copy_button=True
|
| 604 |
)
|
| 605 |
|
| 606 |
+
with gr.Tab("βΉοΈ About & Tips"):
|
| 607 |
gr.Markdown(
|
| 608 |
"""
|
| 609 |
+
## π§ Improvements Made
|
|
|
|
|
|
|
|
|
|
| 610 |
|
| 611 |
+
### β
Enhanced Face Detection
|
| 612 |
+
- **Stricter parameters** to reduce false positives
|
| 613 |
+
- **Overlap detection** to merge duplicate face detections
|
| 614 |
+
- **Size filtering** to ignore unrealistic face sizes
|
| 615 |
+
- **Aspect ratio validation** to filter non-face rectangles
|
| 616 |
|
| 617 |
+
### π― Better Accuracy
|
| 618 |
+
- **Confidence thresholds** to filter uncertain predictions
|
| 619 |
+
- **Improved preprocessing** for better emotion recognition
|
| 620 |
+
- **Face padding** for better context in emotion detection
|
|
|
|
|
|
|
|
|
|
| 621 |
|
| 622 |
+
### π Performance Optimizations
|
| 623 |
+
- **Removed problematic live camera** feature
|
| 624 |
+
- **Streamlined interface** for better user experience
|
| 625 |
+
- **Better error handling** and user feedback
|
| 626 |
|
| 627 |
+
## π Supported Emotions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
+
- π **Angry** - Expressions of anger, frustration
|
| 630 |
+
- π€’ **Disgust** - Expressions of revulsion or distaste
|
| 631 |
+
- π¨ **Fear** - Expressions of fear, anxiety
|
| 632 |
+
- π **Happy** - Expressions of joy, contentment
|
| 633 |
+
- π’ **Sad** - Expressions of sadness, sorrow
|
| 634 |
+
- π² **Surprise** - Expressions of surprise, amazement
|
| 635 |
+
- π **Neutral** - Calm, neutral expressions
|
|
|
|
| 636 |
|
| 637 |
+
## π‘ Tips for Best Results
|
| 638 |
|
| 639 |
+
1. **Use clear, well-lit images** with visible faces
|
| 640 |
+
2. **Adjust confidence threshold** if you get too many/few results
|
| 641 |
+
3. **Modify minimum face size** based on your image resolution
|
| 642 |
+
4. **Frontal face views** work better than profile shots
|
| 643 |
+
5. **Avoid heavily shadowed or blurry faces**
|
| 644 |
|
| 645 |
+
## π§ Troubleshooting
|
| 646 |
|
| 647 |
+
- **No faces detected?** Try lowering the minimum face size
|
| 648 |
+
- **Too many false detections?** Increase the minimum face size or confidence threshold
|
| 649 |
+
- **Missing obvious faces?** Lower the confidence threshold
|
| 650 |
+
- **Multiple boxes on same face?** The system should automatically merge them now
|
| 651 |
|
| 652 |
---
|
| 653 |
|
| 654 |
+
**Model:** [abhilash88/face-emotion-detection](https://huggingface.co/abhilash88/face-emotion-detection)
|
|
|
|
|
|
|
| 655 |
"""
|
| 656 |
)
|
| 657 |
|
| 658 |
# Event handlers
|
| 659 |
+
analyze_btn.click(
|
| 660 |
+
fn=process_image,
|
| 661 |
+
inputs=[image_input, confidence_slider, face_size_slider],
|
| 662 |
+
outputs=[output_image, result_text],
|
| 663 |
+
api_name="analyze_image"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 664 |
)
|
| 665 |
|
| 666 |
analyze_stats_btn.click(
|
| 667 |
fn=get_emotion_statistics,
|
| 668 |
inputs=stats_image_input,
|
| 669 |
outputs=stats_output,
|
| 670 |
+
api_name="get_statistics"
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
batch_process_btn.click(
|
| 674 |
+
fn=analyze_emotions_batch,
|
| 675 |
+
inputs=batch_images_input,
|
| 676 |
+
outputs=batch_results_output,
|
| 677 |
+
api_name="batch_process"
|
| 678 |
)
|
| 679 |
|
| 680 |
+
# Example images
|
| 681 |
gr.Examples(
|
| 682 |
examples=[
|
| 683 |
+
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?w=400&h=400&fit=crop&crop=face",
|
| 684 |
+
"https://images.unsplash.com/photo-1554151228-14d9def656e4?w=400&h=400&fit=crop&crop=face",
|
| 685 |
+
"https://images.unsplash.com/photo-1472099645785-5658abf4ff4e?w=400&h=400&fit=crop&crop=face",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
],
|
| 687 |
+
inputs=image_input,
|
| 688 |
+
label="πΌοΈ Try these example images"
|
|
|
|
| 689 |
)
|
| 690 |
|
| 691 |
return iface
|
| 692 |
|
| 693 |
# Initialize and launch
|
| 694 |
if __name__ == "__main__":
|
| 695 |
+
logger.info("Initializing Improved Face Emotion Detection System...")
|
|
|
|
| 696 |
|
| 697 |
if load_models():
|
| 698 |
logger.info("Models loaded successfully!")
|
| 699 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 700 |
iface = create_interface()
|
| 701 |
|
|
|
|
| 702 |
iface.launch(
|
| 703 |
share=False,
|
| 704 |
show_error=True,
|
| 705 |
server_name="0.0.0.0",
|
| 706 |
server_port=7860,
|
|
|
|
| 707 |
show_api=True
|
| 708 |
)
|
| 709 |
else:
|
| 710 |
logger.error("Failed to load models. Please check your model configuration.")
|
|
|
|
| 711 |
with gr.Blocks() as error_iface:
|
| 712 |
gr.Markdown(
|
| 713 |
"""
|
| 714 |
# β οΈ Model Loading Error
|
| 715 |
|
| 716 |
+
The emotion detection model failed to load. Please check:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
|
| 718 |
+
1. Network connectivity
|
| 719 |
+
2. Model dependencies
|
| 720 |
+
3. System logs for details
|
| 721 |
"""
|
| 722 |
)
|
| 723 |
|