import tempfile import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import os import pickle from datetime import datetime from backend.generate_metadata import generate_metadata, ingest MODEL_NAME = "mixtral" css = ''' <style> .chat-message { padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex } .chat-message.user { background-color: #2b313e } .chat-message.bot { background-color: #475063 } .chat-message .avatar { width: 20%; } .chat-message .avatar img { max-width: 78px; max-height: 78px; border-radius: 50%; object-fit: cover; } .chat-message .message { width: 80%; padding: 0 1.5rem; color: #fff; } ''' bot_template = ''' <div class="chat-message bot"> <div class="avatar"> <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;"> </div> <div class="message">{{MSG}}</div> </div> ''' user_template = ''' <div class="chat-message user"> <div class="avatar"> <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png"> </div> <div class="message">{{MSG}}</div> </div> ''' def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): # Display user message if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) else: print(message) # Display AI response st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) def safe_vec_store(): # USE VECTARA INSTEAD os.makedirs('vectorstore', exist_ok=True) filename = 'vectors' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl' file_path = os.path.join('vectorstore', filename) vector_store = st.session_state.vectorstore # Serialize and save the entire FAISS object using pickle with open(file_path, 'wb') as f: pickle.dump(vector_store, f) """ def main(): st.subheader("Your documents") if st.session_state.classify: pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False) else: pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) filenames = [file.name for file in pdf_docs if file is not None] if st.button("Process"): with st.spinner("Processing"): if st.session_state.classify: # THE CLASSIFICATION APP st.write("Classifying") plain_text_doc = ingest(pdf_doc.name) classification_result = generate_metadata(plain_text_doc) st.write(classification_result) else: # NORMAL RAG loaded_vec_store = None for filename in filenames: if ".pkl" in filename: file_path = os.path.join('vectorstore', filename) with open(file_path, 'rb') as f: loaded_vec_store = pickle.load(f) raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vec = get_vectorstore(text_chunks) if loaded_vec_store: vec.merge_from(loaded_vec_store) st.warning("loaded vectorstore") if "vectorstore" in st.session_state: vec.merge_from(st.session_state.vectorstore) st.warning("merged to existing") st.session_state.vectorstore = vec st.session_state.conversation = get_conversation_chain(vec) st.success("data loaded") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Classification instructions") classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True) filenames = [file.name for file in classifier_docs if file is not None] if st.button("Process Classification"): st.session_state.classify = True with st.spinner("Processing"): st.warning("set classify") time.sleep(3) if st.button("Save Embeddings"): if "vectorstore" in st.session_state: safe_vec_store() # st.session_state.vectorstore.save_local("faiss_index") st.sidebar.success("saved") else: st.sidebar.warning("No embeddings to save. Please process documents first.") if st.button("Load Embeddings"): st.warning("this function is not in use, just upload the vectorstore") """ def main(): st.set_page_config(page_title="Doc Verify RAG", page_icon=":mag:") st.write('Anomaly detection for document metadata', unsafe_allow_html=True) st.header("Doc Verify RAG :mag:") def set_pw(): st.session_state.openai_api_key = True if "openai_api_key" not in st.session_state: st.session_state.openai_api_key = False if "openai_org" not in st.session_state: st.session_state.openai_org = False if "classify" not in st.session_state: st.session_state.classify = False col1, col2 = st.columns(2) with col1: uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf", "txt"]) if uploaded_file is not None: try: with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp: tmp.write(uploaded_file.read()) file_path = tmp.name st.write(f'Created temporary file {file_path}') docs = ingest(file_path) st.write('## Querying Together.ai API') metadata = generate_metadata(docs) st.write(f'## Metadata Generated by {MODEL_NAME}') st.write(metadata) # Clean up the temporary file os.remove(file_path) except Exception as e: st.error(f'Error: {e}') with col2: OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password", disabled=st.session_state.openai_api_key, on_change=set_pw) classification = st.file_uploader("upload the metadata", type=["csv", "txt"]) if __name__ == '__main__': main()