Spaces:
Runtime error
Runtime error
import os | |
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
from groq import Groq | |
from PyPDF2 import PdfReader | |
# Initialize the retriever and Groq client | |
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# client = Groq(api_key=groq_api) # Replace with your actual Groq API key | |
key = os.getenv("groq_api") | |
client = Groq(api_key = key) | |
# Knowledge base (documents) and embeddings | |
documents = [ | |
"Retrieval-Augmented Generation (RAG) is an AI framework that combines the strengths of retrieval-based and generative models.", | |
"The main components of a RAG system are the retriever and the generator.", | |
"A key benefit of Retrieval-Augmented Generation is that it can produce more accurate responses compared to standalone generative models.", | |
"The retrieval process in a RAG system often relies on embedding-based models, like Sentence-BERT or DPR.", | |
"Common use cases of RAG include chatbots, customer support systems, and knowledge retrieval for business intelligence." | |
] | |
document_embeddings = retriever.encode(documents, convert_to_tensor=True) | |
# Function to retrieve top relevant document and truncate context if too long | |
def retrieve(query, top_k=1, max_tokens=100): | |
query_embedding = retriever.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k) | |
top_docs = [documents[hit['corpus_id']] for hit in hits[0]] | |
# Truncate context to max_tokens if necessary | |
context = top_docs[0] if hits[0] else "" | |
context = ' '.join(context.split()[:max_tokens]) # Limit to max_tokens words | |
return context | |
# Function to generate response using Groq | |
def generate_response(query, context): | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Context: {context} Question: {query} Answer:" | |
} | |
], | |
model="gemma2-9b-it" | |
) | |
return response.choices[0].message.content | |
# Function to handle PDF upload and text extraction | |
def extract_text_from_pdf(file): | |
pdf_reader = PdfReader(file) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to update knowledge base with new content from PDF | |
def update_knowledge_base(pdf_text): | |
global documents, document_embeddings | |
documents.append(pdf_text) | |
document_embeddings = retriever.encode(documents, convert_to_tensor=True) | |
# Streamlit app layout | |
st.title("RAG-based Question Answering App") | |
st.write("Upload a PDF, ask questions based on its content, and get answers!") | |
# Upload PDF file | |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") | |
if uploaded_file: | |
pdf_text = extract_text_from_pdf(uploaded_file) | |
update_knowledge_base(pdf_text) | |
st.write("PDF content successfully added to the knowledge base.") | |
# Question input | |
question = st.text_input("Enter your question:") | |
if question: | |
retrieved_context = retrieve(question) | |
if retrieved_context: | |
answer = generate_response(question, retrieved_context) | |
else: | |
answer = "I have no knowledge about this topic." | |
st.write("Answer:", answer) | |