Commit
·
f81cfe2
1
Parent(s):
ad3fa03
model added
Browse files- Dockerfile +18 -0
- api_onnx.py +85 -0
- app.py +406 -0
- config.py +75 -0
- distilbert-base-multilingual-cased/config.json +22 -0
- distilbert-base-multilingual-cased/tokenizer.json +0 -0
- distilbert-base-multilingual-cased/tokenizer_config.json +1 -0
- distilbert-base-multilingual-cased/vocab.txt +0 -0
- entrypoint.sh +10 -0
- inference_onnx.py +172 -0
- poc_onnx_model_punctuation_batch.onnx +3 -0
- requirements.txt +9 -0
Dockerfile
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM pytorch/pytorch:latest
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y curl && rm -rf /var/lib/apt/lists/*
|
| 7 |
+
|
| 8 |
+
COPY requirements.txt ./
|
| 9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
+
|
| 11 |
+
# Copy your source code
|
| 12 |
+
COPY . .
|
| 13 |
+
|
| 14 |
+
# Expose port 7860 (Hugging Face Spaces default)
|
| 15 |
+
EXPOSE 7860
|
| 16 |
+
|
| 17 |
+
# Run both API and Gradio
|
| 18 |
+
CMD ["bash", "entrypoint.sh"]
|
api_onnx.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
from fastapi import FastAPI, Request
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from inference_onnx import get_transcription
|
| 6 |
+
import torch
|
| 7 |
+
import onnxruntime as ort
|
| 8 |
+
from config import *
|
| 9 |
+
from contextlib import asynccontextmanager
|
| 10 |
+
|
| 11 |
+
# Global session object (attached to app.state)
|
| 12 |
+
@asynccontextmanager
|
| 13 |
+
async def lifespan(app: FastAPI):
|
| 14 |
+
print("🔧 Loading model...")
|
| 15 |
+
|
| 16 |
+
app.state.device = torch.device('cpu')
|
| 17 |
+
app.state.tokenizer = MODELS["./distilbert-base-multilingual-cased"][1].from_pretrained("./distilbert-base-multilingual-cased")
|
| 18 |
+
app.state.token_style = MODELS["./distilbert-base-multilingual-cased"][3]
|
| 19 |
+
|
| 20 |
+
onnx_model_path = "./poc_onnx_model_punctuation_batch.onnx"
|
| 21 |
+
providers = ['CPUExecutionProvider']
|
| 22 |
+
# providers = ["CUDAExecutionProvider"]
|
| 23 |
+
# providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 24 |
+
sess_options = ort.SessionOptions()
|
| 25 |
+
app.state.session = ort.InferenceSession(onnx_model_path, providers=providers)
|
| 26 |
+
|
| 27 |
+
print("✅ ONNX model loaded into memory.")
|
| 28 |
+
yield
|
| 29 |
+
print("🧹 Shutting down...")
|
| 30 |
+
|
| 31 |
+
app = FastAPI(lifespan=lifespan)
|
| 32 |
+
|
| 33 |
+
punc_dict = {
|
| 34 |
+
'!': 'EXCLAMATION',
|
| 35 |
+
'?': 'QUESTION',
|
| 36 |
+
',': 'COMMA',
|
| 37 |
+
';': 'SEMICOLON',
|
| 38 |
+
':': 'COLON',
|
| 39 |
+
'-': 'HYPHEN',
|
| 40 |
+
'।': 'DARI',
|
| 41 |
+
}
|
| 42 |
+
allowed_punctuations = set(punc_dict.keys())
|
| 43 |
+
|
| 44 |
+
def clean_and_normalize_text(text, remove_punctuations=False):
|
| 45 |
+
"""Clean and normalize Bangla text with correct spacing"""
|
| 46 |
+
if remove_punctuations:
|
| 47 |
+
# Remove all allowed punctuations
|
| 48 |
+
cleaned_text = re.sub(f"[{re.escape(''.join(allowed_punctuations))}]", "", text)
|
| 49 |
+
# Normalize spaces
|
| 50 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
|
| 51 |
+
return cleaned_text
|
| 52 |
+
else:
|
| 53 |
+
# Keep only allowed punctuations and Bangla letters/digits
|
| 54 |
+
chunks = re.split(f"([{re.escape(''.join(allowed_punctuations))}])", text)
|
| 55 |
+
filtered_chunks = []
|
| 56 |
+
|
| 57 |
+
for chunk in chunks:
|
| 58 |
+
if chunk in allowed_punctuations:
|
| 59 |
+
filtered_chunks.append(chunk)
|
| 60 |
+
else:
|
| 61 |
+
# Clean text and preserve word boundaries
|
| 62 |
+
clean_chunk = re.sub(rf"[^\u0980-\u09FF\u09E6-\u09EF\s]", "", chunk)
|
| 63 |
+
clean_chunk = re.sub(r'\s+', ' ', clean_chunk) # Normalize internal spacing
|
| 64 |
+
clean_chunk = clean_chunk.strip()
|
| 65 |
+
if clean_chunk:
|
| 66 |
+
filtered_chunks.append(' ' + clean_chunk) # Add space before word chunks
|
| 67 |
+
|
| 68 |
+
# Join and clean up spacing
|
| 69 |
+
result = ''.join(filtered_chunks)
|
| 70 |
+
result = re.sub(r'\s+', ' ', result).strip()
|
| 71 |
+
return result
|
| 72 |
+
|
| 73 |
+
class TextInput(BaseModel):
|
| 74 |
+
text: str
|
| 75 |
+
|
| 76 |
+
@app.post("/punctuate")
|
| 77 |
+
async def punctuate_text(data: TextInput):
|
| 78 |
+
input_normalized = clean_and_normalize_text(data.text)
|
| 79 |
+
input_normalized = clean_and_normalize_text(input_normalized, remove_punctuations=True)
|
| 80 |
+
restored_text = get_transcription(input_normalized, app.state.session, app.state.tokenizer, app.state.device, app.state.token_style)
|
| 81 |
+
return {"restored_text": restored_text}
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
import uvicorn
|
| 85 |
+
uvicorn.run("api_onnx:app", host="0.0.0.0", port=5685, workers=1)
|
app.py
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import re
|
| 5 |
+
import time
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from typing import Dict, Tuple, List, Optional
|
| 8 |
+
|
| 9 |
+
# Configuration
|
| 10 |
+
API_URL = "http://localhost:5685/punctuate"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
punc_dict = {
|
| 14 |
+
'!': 'EXCLAMATION',
|
| 15 |
+
'?': 'QUESTION',
|
| 16 |
+
',': 'COMMA',
|
| 17 |
+
';': 'SEMICOLON',
|
| 18 |
+
':': 'COLON',
|
| 19 |
+
'-': 'HYPHEN',
|
| 20 |
+
'।': 'DARI',
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
allowed_punctuations = set(punc_dict.keys())
|
| 24 |
+
|
| 25 |
+
def clean_and_normalize_text(text, remove_punctuations=False):
|
| 26 |
+
"""Clean and normalize Bangla text with correct spacing"""
|
| 27 |
+
if remove_punctuations:
|
| 28 |
+
# Remove all allowed punctuations
|
| 29 |
+
cleaned_text = re.sub(f"[{re.escape(''.join(allowed_punctuations))}]", "", text)
|
| 30 |
+
# Normalize spaces
|
| 31 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
|
| 32 |
+
return cleaned_text
|
| 33 |
+
else:
|
| 34 |
+
# Keep only allowed punctuations and Bangla letters/digits
|
| 35 |
+
chunks = re.split(f"([{re.escape(''.join(allowed_punctuations))}])", text)
|
| 36 |
+
filtered_chunks = []
|
| 37 |
+
|
| 38 |
+
for chunk in chunks:
|
| 39 |
+
if chunk in allowed_punctuations:
|
| 40 |
+
filtered_chunks.append(chunk)
|
| 41 |
+
else:
|
| 42 |
+
# Clean text and preserve word boundaries
|
| 43 |
+
clean_chunk = re.sub(rf"[^\u0980-\u09FF\u09E6-\u09EF\s]", "", chunk)
|
| 44 |
+
clean_chunk = re.sub(r'\s+', ' ', clean_chunk) # Normalize internal spacing
|
| 45 |
+
clean_chunk = clean_chunk.strip()
|
| 46 |
+
if clean_chunk:
|
| 47 |
+
filtered_chunks.append(' ' + clean_chunk) # Add space before word chunks
|
| 48 |
+
|
| 49 |
+
# Join and clean up spacing
|
| 50 |
+
result = ''.join(filtered_chunks)
|
| 51 |
+
result = re.sub(r'\s+', ' ', result).strip()
|
| 52 |
+
return result
|
| 53 |
+
|
| 54 |
+
def restore_punctuation(text):
|
| 55 |
+
"""Call the punctuation restoration API"""
|
| 56 |
+
try:
|
| 57 |
+
payload = {"text": text}
|
| 58 |
+
start_time = time.time()
|
| 59 |
+
response = requests.post(API_URL, json=payload)
|
| 60 |
+
end_time = time.time()
|
| 61 |
+
|
| 62 |
+
api_time = end_time - start_time
|
| 63 |
+
|
| 64 |
+
if response.status_code == 200:
|
| 65 |
+
restored_text = response.json().get("restored_text")
|
| 66 |
+
return restored_text, api_time
|
| 67 |
+
else:
|
| 68 |
+
return f"API Error: {response.status_code} - {response.text}", api_time
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return f"Connection Error: {str(e)}", 0.0
|
| 71 |
+
|
| 72 |
+
def dummy_restore_punctuation(text):
|
| 73 |
+
"""Dummy API call for demonstration when real API is not available"""
|
| 74 |
+
time.sleep(0.5) # Simulate API delay
|
| 75 |
+
|
| 76 |
+
# Simple dummy logic - add some punctuations randomly for demo
|
| 77 |
+
words = text.split()
|
| 78 |
+
if len(words) > 5:
|
| 79 |
+
words[2] = words[2] + ','
|
| 80 |
+
words[-1] = words[-1] + '?'
|
| 81 |
+
elif len(words) > 2:
|
| 82 |
+
words[-1] = words[-1] + '!'
|
| 83 |
+
|
| 84 |
+
return ' '.join(words), 0.5
|
| 85 |
+
|
| 86 |
+
def tokenize_with_punctuation(text):
|
| 87 |
+
"""Tokenize text keeping punctuation separate using chunk-based approach"""
|
| 88 |
+
tokens = []
|
| 89 |
+
chunks = re.split(f"([{re.escape(''.join(allowed_punctuations))}])", text)
|
| 90 |
+
|
| 91 |
+
for chunk in chunks:
|
| 92 |
+
if not chunk.strip():
|
| 93 |
+
continue
|
| 94 |
+
|
| 95 |
+
if chunk in allowed_punctuations:
|
| 96 |
+
# This is a punctuation
|
| 97 |
+
tokens.append(chunk)
|
| 98 |
+
else:
|
| 99 |
+
# This is text, split into words
|
| 100 |
+
words = chunk.strip().split()
|
| 101 |
+
for word in words:
|
| 102 |
+
if word.strip():
|
| 103 |
+
tokens.append(word.strip())
|
| 104 |
+
|
| 105 |
+
return tokens
|
| 106 |
+
|
| 107 |
+
def compare_texts(ground_truth, predicted):
|
| 108 |
+
"""Compare ground truth and predicted text token by token with proper alignment"""
|
| 109 |
+
gt_tokens = tokenize_with_punctuation(ground_truth)
|
| 110 |
+
pred_tokens = tokenize_with_punctuation(predicted)
|
| 111 |
+
|
| 112 |
+
comparison_result = []
|
| 113 |
+
correct_puncs = {}
|
| 114 |
+
wrong_puncs = {}
|
| 115 |
+
gt_punc_counts = {}
|
| 116 |
+
|
| 117 |
+
# Count punctuations in ground truth
|
| 118 |
+
for token in gt_tokens:
|
| 119 |
+
if token in allowed_punctuations:
|
| 120 |
+
punc_name = punc_dict[token]
|
| 121 |
+
gt_punc_counts[punc_name] = gt_punc_counts.get(punc_name, 0) + 1
|
| 122 |
+
|
| 123 |
+
# Separate words and punctuations for better alignment
|
| 124 |
+
gt_words = [token for token in gt_tokens if token not in allowed_punctuations]
|
| 125 |
+
pred_words = [token for token in pred_tokens if token not in allowed_punctuations]
|
| 126 |
+
|
| 127 |
+
# Create position maps for punctuations
|
| 128 |
+
gt_punct_map = {} # word_index -> [punctuations after this word]
|
| 129 |
+
pred_punct_map = {} # word_index -> [punctuations after this word]
|
| 130 |
+
|
| 131 |
+
# Build ground truth punctuation map
|
| 132 |
+
word_idx = -1
|
| 133 |
+
for i, token in enumerate(gt_tokens):
|
| 134 |
+
if token not in allowed_punctuations:
|
| 135 |
+
word_idx += 1
|
| 136 |
+
else:
|
| 137 |
+
if word_idx not in gt_punct_map:
|
| 138 |
+
gt_punct_map[word_idx] = []
|
| 139 |
+
gt_punct_map[word_idx].append(token)
|
| 140 |
+
|
| 141 |
+
# Build predicted punctuation map
|
| 142 |
+
word_idx = -1
|
| 143 |
+
for i, token in enumerate(pred_tokens):
|
| 144 |
+
if token not in allowed_punctuations:
|
| 145 |
+
word_idx += 1
|
| 146 |
+
else:
|
| 147 |
+
if word_idx not in pred_punct_map:
|
| 148 |
+
pred_punct_map[word_idx] = []
|
| 149 |
+
pred_punct_map[word_idx].append(token)
|
| 150 |
+
|
| 151 |
+
# Compare words and punctuations
|
| 152 |
+
max_words = max(len(gt_words), len(pred_words))
|
| 153 |
+
|
| 154 |
+
for i in range(max_words):
|
| 155 |
+
# Add word
|
| 156 |
+
if i < len(gt_words) and i < len(pred_words):
|
| 157 |
+
if gt_words[i] == pred_words[i]:
|
| 158 |
+
comparison_result.append((gt_words[i], "correct", "black"))
|
| 159 |
+
else:
|
| 160 |
+
comparison_result.append((f"{gt_words[i]}→{pred_words[i]}", "word_diff", "orange"))
|
| 161 |
+
elif i < len(gt_words):
|
| 162 |
+
comparison_result.append((f"{gt_words[i]}→''", "missing_word", "red"))
|
| 163 |
+
elif i < len(pred_words):
|
| 164 |
+
comparison_result.append((f"''→{pred_words[i]}", "extra_word", "red"))
|
| 165 |
+
|
| 166 |
+
# Compare punctuations after this word
|
| 167 |
+
gt_puncs = gt_punct_map.get(i, [])
|
| 168 |
+
pred_puncs = pred_punct_map.get(i, [])
|
| 169 |
+
|
| 170 |
+
# Handle punctuation comparison
|
| 171 |
+
max_puncs = max(len(gt_puncs), len(pred_puncs))
|
| 172 |
+
|
| 173 |
+
for j in range(max_puncs):
|
| 174 |
+
if j < len(gt_puncs) and j < len(pred_puncs):
|
| 175 |
+
gt_punc = gt_puncs[j]
|
| 176 |
+
pred_punc = pred_puncs[j]
|
| 177 |
+
|
| 178 |
+
if gt_punc == pred_punc:
|
| 179 |
+
punc_name = punc_dict[gt_punc]
|
| 180 |
+
correct_puncs[punc_name] = correct_puncs.get(punc_name, 0) + 1
|
| 181 |
+
comparison_result.append((gt_punc, "correct", "green"))
|
| 182 |
+
else:
|
| 183 |
+
# Wrong punctuation
|
| 184 |
+
punc_name = punc_dict[gt_punc]
|
| 185 |
+
wrong_puncs[punc_name] = wrong_puncs.get(punc_name, 0) + 1
|
| 186 |
+
comparison_result.append((f"{gt_punc}→{pred_punc}", "wrong_punct", "red"))
|
| 187 |
+
|
| 188 |
+
elif j < len(gt_puncs):
|
| 189 |
+
# Missing punctuation
|
| 190 |
+
gt_punc = gt_puncs[j]
|
| 191 |
+
punc_name = punc_dict[gt_punc]
|
| 192 |
+
wrong_puncs[punc_name] = wrong_puncs.get(punc_name, 0) + 1
|
| 193 |
+
comparison_result.append((f"{gt_punc}→''", "missing_punct", "red"))
|
| 194 |
+
|
| 195 |
+
elif j < len(pred_puncs):
|
| 196 |
+
# Extra punctuation (not counted in wrong_puncs since it's not in GT)
|
| 197 |
+
pred_punc = pred_puncs[j]
|
| 198 |
+
comparison_result.append((f"''→{pred_punc}", "extra_punct", "red"))
|
| 199 |
+
|
| 200 |
+
return comparison_result, correct_puncs, wrong_puncs, gt_punc_counts
|
| 201 |
+
|
| 202 |
+
def create_evaluation_table(correct_puncs, wrong_puncs, gt_punc_counts):
|
| 203 |
+
"""Create evaluation table"""
|
| 204 |
+
table_data = []
|
| 205 |
+
|
| 206 |
+
for punc_name in gt_punc_counts.keys():
|
| 207 |
+
correct_count = correct_puncs.get(punc_name, 0)
|
| 208 |
+
wrong_count = wrong_puncs.get(punc_name, 0)
|
| 209 |
+
total_count = gt_punc_counts[punc_name]
|
| 210 |
+
|
| 211 |
+
table_data.append([
|
| 212 |
+
punc_name,
|
| 213 |
+
correct_count,
|
| 214 |
+
wrong_count,
|
| 215 |
+
total_count
|
| 216 |
+
])
|
| 217 |
+
|
| 218 |
+
df = pd.DataFrame(table_data, columns=[
|
| 219 |
+
"Punctuation Name",
|
| 220 |
+
"Correctly Classified",
|
| 221 |
+
"Wrongly Classified",
|
| 222 |
+
"Count in Ground Truth"
|
| 223 |
+
])
|
| 224 |
+
|
| 225 |
+
return df
|
| 226 |
+
|
| 227 |
+
def format_comparison_html(comparison_result):
|
| 228 |
+
"""Format comparison result as HTML with improved display"""
|
| 229 |
+
html = "<div style='font-family: monospace; font-size: 16px; line-height: 1.8; padding: 20px; border: 1px solid #ddd; border-radius: 5px;'>"
|
| 230 |
+
|
| 231 |
+
for token, status, color in comparison_result:
|
| 232 |
+
if status == "correct" and color == "green":
|
| 233 |
+
# Correct punctuation
|
| 234 |
+
html += f"<span style='background-color: #d4edda; color: #155724; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{token}</span>"
|
| 235 |
+
elif color == "red":
|
| 236 |
+
# Incorrect, missing, or extra punctuation/word
|
| 237 |
+
if "→''" in token:
|
| 238 |
+
# Missing punctuation or word
|
| 239 |
+
missing_item = token.split("→")[0]
|
| 240 |
+
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{missing_item}→∅</span>"
|
| 241 |
+
elif "''→" in token:
|
| 242 |
+
# Extra punctuation or word
|
| 243 |
+
extra_item = token.split("→")[1]
|
| 244 |
+
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>∅→{extra_item}</span>"
|
| 245 |
+
else:
|
| 246 |
+
# Wrong punctuation/word
|
| 247 |
+
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{token}</span>"
|
| 248 |
+
elif color == "orange":
|
| 249 |
+
# Word difference
|
| 250 |
+
html += f"<span style='background-color: #fff3cd; color: #856404; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token}</span>"
|
| 251 |
+
else:
|
| 252 |
+
# Correct word
|
| 253 |
+
html += f"<span style='padding: 2px 4px; margin: 1px;'>{token}</span>"
|
| 254 |
+
|
| 255 |
+
# Add space after each token
|
| 256 |
+
html += " "
|
| 257 |
+
|
| 258 |
+
html += "</div>"
|
| 259 |
+
|
| 260 |
+
# Add legend
|
| 261 |
+
html += """
|
| 262 |
+
<div style='margin-top: 15px; padding: 10px; background-color: #f8f9fa; border-radius: 5px; font-size: 14px;'>
|
| 263 |
+
<strong>Legend:</strong><br>
|
| 264 |
+
<span style='background-color: #d4edda; color: #155724; padding: 1px 3px; border-radius: 2px; margin: 2px;'>✓</span> Correct punctuation
|
| 265 |
+
<span style='background-color: #f8d7da; color: #721c24; padding: 1px 3px; border-radius: 2px; margin: 2px;'>✗</span> Wrong/Missing/Extra punctuation
|
| 266 |
+
<span style='background-color: #fff3cd; color: #856404; padding: 1px 3px; border-radius: 2px; margin: 2px;'>~</span> Word difference
|
| 267 |
+
<span style='padding: 1px 3px; margin: 2px;'>◦</span> Correct word<br>
|
| 268 |
+
<strong>∅</strong> = Empty/Missing
|
| 269 |
+
</div>
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
return html
|
| 273 |
+
|
| 274 |
+
def process_punctuation_restoration(input_text, ground_truth=""):
|
| 275 |
+
"""Main processing function"""
|
| 276 |
+
if not input_text.strip():
|
| 277 |
+
return "Please enter input text", "", "", None, ""
|
| 278 |
+
|
| 279 |
+
# Make API call (using dummy for demonstration)
|
| 280 |
+
try:
|
| 281 |
+
# Try real API first
|
| 282 |
+
predicted_text, api_time = restore_punctuation(input_text)
|
| 283 |
+
if "Error" in str(predicted_text):
|
| 284 |
+
# Fall back to dummy API
|
| 285 |
+
# predicted_text, api_time = dummy_restore_punctuation(input_text)
|
| 286 |
+
predicted_text, api_time = f"Error : {input_text}", 999999
|
| 287 |
+
except:
|
| 288 |
+
# Fall back to dummy API
|
| 289 |
+
# predicted_text, api_time = dummy_restore_punctuation(input_text)
|
| 290 |
+
predicted_text, api_time = f"Error : {input_text}", 999999
|
| 291 |
+
|
| 292 |
+
time_info = f"API call completed in {api_time:.3f} seconds"
|
| 293 |
+
|
| 294 |
+
predicted_text = predicted_text[0] if isinstance(predicted_text, list) else predicted_text
|
| 295 |
+
|
| 296 |
+
print(f"input_text: {input_text}", flush=True)
|
| 297 |
+
print(f"predicted_text: {predicted_text}", flush=True)
|
| 298 |
+
if not ground_truth.strip():
|
| 299 |
+
return predicted_text, "", time_info, None, ""
|
| 300 |
+
|
| 301 |
+
# Normalize ground truth
|
| 302 |
+
ground_truth_normalized = clean_and_normalize_text(ground_truth)
|
| 303 |
+
|
| 304 |
+
# Compare texts
|
| 305 |
+
comparison_result, correct_puncs, wrong_puncs, gt_punc_counts = compare_texts(
|
| 306 |
+
ground_truth_normalized, predicted_text
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# Create comparison HTML
|
| 310 |
+
comparison_html = format_comparison_html(comparison_result)
|
| 311 |
+
|
| 312 |
+
# Create evaluation table
|
| 313 |
+
eval_table = create_evaluation_table(correct_puncs, wrong_puncs, gt_punc_counts)
|
| 314 |
+
|
| 315 |
+
return predicted_text, comparison_html, time_info, eval_table, f"Normalized Ground Truth: {ground_truth_normalized}"
|
| 316 |
+
|
| 317 |
+
# Create Gradio interface
|
| 318 |
+
def create_interface():
|
| 319 |
+
with gr.Blocks(title="Punctuation Restoration Evaluator", theme=gr.themes.Soft()) as app:
|
| 320 |
+
gr.Markdown("# 🔤 Punctuation Restoration Evaluator")
|
| 321 |
+
gr.Markdown("Enter text to restore punctuation. Optionally provide ground truth for evaluation.")
|
| 322 |
+
|
| 323 |
+
with gr.Row():
|
| 324 |
+
with gr.Column(scale=1):
|
| 325 |
+
input_text = gr.Textbox(
|
| 326 |
+
label="Input Text (without punctuation)",
|
| 327 |
+
placeholder="পুরুষের সংখ্যা মোট জনসংখ্যার ৫২ এবং নারীর সংখ্যা ৪৮ শহরের সাক্ষরতার হার কত",
|
| 328 |
+
lines=4
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
ground_truth = gr.Textbox(
|
| 332 |
+
label="Ground Truth (optional)",
|
| 333 |
+
placeholder="পুরুষের সংখ্যা মোট জনসংখ্যার ৫২, এবং নারীর সংখ্যা ৪৮। শহরের সাক্ষরতার হার কত?",
|
| 334 |
+
lines=4
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
submit_btn = gr.Button("🚀 Restore Punctuation", variant="primary")
|
| 338 |
+
|
| 339 |
+
with gr.Column(scale=2):
|
| 340 |
+
api_time = gr.Textbox(label="⏱️ API Response Time", interactive=False)
|
| 341 |
+
|
| 342 |
+
predicted_output = gr.Textbox(
|
| 343 |
+
label="📝 Predicted Output",
|
| 344 |
+
lines=3,
|
| 345 |
+
interactive=False
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
normalized_gt = gr.Textbox(
|
| 349 |
+
label="📋 Normalized Ground Truth",
|
| 350 |
+
lines=2,
|
| 351 |
+
interactive=False
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
comparison_output = gr.HTML(
|
| 355 |
+
label="🔍 Token-wise Comparison",
|
| 356 |
+
value="<p>Comparison will appear here after processing with ground truth.</p>"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
evaluation_table = gr.Dataframe(
|
| 360 |
+
label="📊 Punctuation Evaluation Metrics",
|
| 361 |
+
headers=["Punctuation Name", "Correctly Classified", "Wrongly Classified", "Count in Ground Truth"],
|
| 362 |
+
interactive=False
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# Legend
|
| 366 |
+
gr.Markdown("""
|
| 367 |
+
### 🎨 Color Legend:
|
| 368 |
+
- 🟢 **Green**: Correctly predicted punctuation
|
| 369 |
+
- 🔴 **Red**: Incorrectly predicted, missing, or extra punctuation/word
|
| 370 |
+
- 🟡 **Orange**: Word-level differences
|
| 371 |
+
- ⚫ **Black**: Correct words/tokens
|
| 372 |
+
- **∅**: Empty/Missing (instead of showing word→word or punct→word)
|
| 373 |
+
""")
|
| 374 |
+
|
| 375 |
+
submit_btn.click(
|
| 376 |
+
fn=process_punctuation_restoration,
|
| 377 |
+
inputs=[input_text, ground_truth],
|
| 378 |
+
outputs=[predicted_output, comparison_output, api_time, evaluation_table, normalized_gt]
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
# Example section
|
| 382 |
+
gr.Markdown("### 📚 Example")
|
| 383 |
+
gr.Examples(
|
| 384 |
+
examples=[
|
| 385 |
+
[
|
| 386 |
+
"পুরুষের সংখ্যা মোট জনসংখ্যার ৫২ এবং নারীর সংখ্যা ৪৮ শহরের সাক্ষরতার হার কত",
|
| 387 |
+
"পুরুষের সংখ্যা মোট জনসংখ্যার ৫২, এবং নারীর সংখ্যা ৪৮। শহরের সাক্ষরতার হার কত?"
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
"ক্রিকেট বিশ্বের কাছে নিজের আগামীবার তা ভালোভাবেই পৌঁছে দিলেন পাকিস্তানের পেসার আমের জামান",
|
| 391 |
+
""
|
| 392 |
+
]
|
| 393 |
+
],
|
| 394 |
+
inputs=[input_text, ground_truth]
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
return app
|
| 398 |
+
|
| 399 |
+
if __name__ == "__main__":
|
| 400 |
+
app = create_interface()
|
| 401 |
+
app.launch(
|
| 402 |
+
server_name="0.0.0.0",
|
| 403 |
+
server_port=7860,
|
| 404 |
+
share=False,
|
| 405 |
+
debug=True
|
| 406 |
+
)
|
config.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import *
|
| 2 |
+
|
| 3 |
+
# special tokens indices in different models available in transformers
|
| 4 |
+
TOKEN_IDX = {
|
| 5 |
+
'bert': {
|
| 6 |
+
'START_SEQ': 101,
|
| 7 |
+
'PAD': 0,
|
| 8 |
+
'END_SEQ': 102,
|
| 9 |
+
'UNK': 100
|
| 10 |
+
},
|
| 11 |
+
'xlm': {
|
| 12 |
+
'START_SEQ': 0,
|
| 13 |
+
'PAD': 2,
|
| 14 |
+
'END_SEQ': 1,
|
| 15 |
+
'UNK': 3
|
| 16 |
+
},
|
| 17 |
+
'roberta': {
|
| 18 |
+
'START_SEQ': 0,
|
| 19 |
+
'PAD': 1,
|
| 20 |
+
'END_SEQ': 2,
|
| 21 |
+
'UNK': 3
|
| 22 |
+
},
|
| 23 |
+
'albert': {
|
| 24 |
+
'START_SEQ': 2,
|
| 25 |
+
'PAD': 0,
|
| 26 |
+
'END_SEQ': 3,
|
| 27 |
+
'UNK': 1
|
| 28 |
+
},
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
# 'O' -> No punctuation
|
| 32 |
+
punctuation_dict = {
|
| 33 |
+
'0': 0,
|
| 34 |
+
"DARI": 1,
|
| 35 |
+
"COMMA": 2,
|
| 36 |
+
"SEMICOLON": 3,
|
| 37 |
+
"QUESTION": 4,
|
| 38 |
+
"EXCLAMATION": 5,
|
| 39 |
+
"COLON": 6,
|
| 40 |
+
"HYPHEN": 7,
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
punctuation_map = {
|
| 44 |
+
0: "",
|
| 45 |
+
1: '।', # 'DARI'
|
| 46 |
+
2: ',', # 'COMMA'
|
| 47 |
+
3: ';', # 'SEMICOLON'
|
| 48 |
+
4: '?', # 'QUESTION'
|
| 49 |
+
5: '!', # 'EXCLAMATION'
|
| 50 |
+
6: ':', # 'COLON'
|
| 51 |
+
7: '-', # 'HYPHEN'
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
# pretrained model name: (model class, model tokenizer, output dimension, token style)
|
| 55 |
+
MODELS = {
|
| 56 |
+
'bert-base-uncased': (BertModel, BertTokenizer, 768, 'bert'),
|
| 57 |
+
'bert-large-uncased': (BertModel, BertTokenizer, 1024, 'bert'),
|
| 58 |
+
'bert-base-multilingual-cased': (BertModel, BertTokenizer, 768, 'bert'),
|
| 59 |
+
'bert-base-multilingual-uncased': (BertModel, BertTokenizer, 768, 'bert'),
|
| 60 |
+
'sagorsarker/bangla-bert-base': (BertModel, BertTokenizer, 768, 'bert'),
|
| 61 |
+
# 'distilbert-base-multilingual-cased': (AutoModelForMaskedLM, AutoTokenizer, 768, 'bert'),
|
| 62 |
+
'xlm-mlm-en-2048': (XLMModel, XLMTokenizer, 2048, 'xlm'),
|
| 63 |
+
'xlm-mlm-100-1280': (XLMModel, XLMTokenizer, 1280, 'xlm'),
|
| 64 |
+
'roberta-base': (RobertaModel, RobertaTokenizer, 768, 'roberta'),
|
| 65 |
+
'roberta-large': (RobertaModel, RobertaTokenizer, 1024, 'roberta'),
|
| 66 |
+
'neuralspace-reverie/indic-transformers-bn-roberta': (RobertaModel, RobertaTokenizer, 768, 'roberta'),
|
| 67 |
+
'distilbert-base-uncased': (DistilBertModel, DistilBertTokenizer, 768, 'bert'),
|
| 68 |
+
'distilbert-base-multilingual-cased': (DistilBertModel, DistilBertTokenizer, 768, 'bert'),
|
| 69 |
+
'./distilbert-base-multilingual-cased': (DistilBertModel, DistilBertTokenizer, 768, 'bert'),
|
| 70 |
+
'xlm-roberta-base': (XLMRobertaModel, XLMRobertaTokenizer, 768, 'roberta'),
|
| 71 |
+
'xlm-roberta-large': (XLMRobertaModel, XLMRobertaTokenizer, 1024, 'roberta'),
|
| 72 |
+
'albert-base-v1': (AlbertModel, AlbertTokenizer, 768, 'albert'),
|
| 73 |
+
'albert-base-v2': (AlbertModel, AlbertTokenizer, 768, 'albert'),
|
| 74 |
+
'albert-large-v2': (AlbertModel, AlbertTokenizer, 1024, 'albert'),
|
| 75 |
+
}
|
distilbert-base-multilingual-cased/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"hidden_dim": 3072,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"max_position_embeddings": 512,
|
| 12 |
+
"model_type": "distilbert",
|
| 13 |
+
"n_heads": 12,
|
| 14 |
+
"n_layers": 6,
|
| 15 |
+
"output_past": true,
|
| 16 |
+
"pad_token_id": 0,
|
| 17 |
+
"qa_dropout": 0.1,
|
| 18 |
+
"seq_classif_dropout": 0.2,
|
| 19 |
+
"sinusoidal_pos_embds": false,
|
| 20 |
+
"tie_weights_": true,
|
| 21 |
+
"vocab_size": 119547
|
| 22 |
+
}
|
distilbert-base-multilingual-cased/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
distilbert-base-multilingual-cased/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": false, "model_max_length": 512}
|
distilbert-base-multilingual-cased/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
entrypoint.sh
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Start the API in background
|
| 4 |
+
python api_onnx.py &
|
| 5 |
+
|
| 6 |
+
# Wait briefly to make sure API is up
|
| 7 |
+
sleep 5
|
| 8 |
+
|
| 9 |
+
# Start the Gradio UI (on port 5685)
|
| 10 |
+
python app.py
|
inference_onnx.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import List, Union, Dict, Any
|
| 4 |
+
from config import *
|
| 5 |
+
|
| 6 |
+
def get_encoded_input_single(text, tokenizer, token_style, sequence_len = 256):
|
| 7 |
+
"""Process a single text sequence - matches your conversion code logic"""
|
| 8 |
+
words = text.split()
|
| 9 |
+
word_pos = 0
|
| 10 |
+
|
| 11 |
+
x = [TOKEN_IDX[token_style]['START_SEQ']]
|
| 12 |
+
y_mask = [0]
|
| 13 |
+
|
| 14 |
+
while len(x) < sequence_len and word_pos < len(words):
|
| 15 |
+
tokens = tokenizer.tokenize(words[word_pos])
|
| 16 |
+
if len(tokens) + len(x) >= sequence_len:
|
| 17 |
+
break
|
| 18 |
+
else:
|
| 19 |
+
for i in range(len(tokens) - 1):
|
| 20 |
+
x.append(tokenizer.convert_tokens_to_ids(tokens[i]))
|
| 21 |
+
y_mask.append(0)
|
| 22 |
+
x.append(tokenizer.convert_tokens_to_ids(tokens[-1]))
|
| 23 |
+
y_mask.append(1)
|
| 24 |
+
word_pos += 1
|
| 25 |
+
|
| 26 |
+
x.append(TOKEN_IDX[token_style]['END_SEQ'])
|
| 27 |
+
y_mask.append(0)
|
| 28 |
+
|
| 29 |
+
# Pad to sequence_len
|
| 30 |
+
if len(x) < sequence_len:
|
| 31 |
+
x = x + [TOKEN_IDX[token_style]['PAD'] for _ in range(sequence_len - len(x))]
|
| 32 |
+
y_mask = y_mask + [0 for _ in range(sequence_len - len(y_mask))]
|
| 33 |
+
|
| 34 |
+
attn_mask = [1 if token != TOKEN_IDX[token_style]['PAD'] else 0 for token in x]
|
| 35 |
+
|
| 36 |
+
return {
|
| 37 |
+
'input_values': x,
|
| 38 |
+
'attention_mask': attn_mask,
|
| 39 |
+
'y_mask': y_mask
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
def get_encoded_input_batch(texts, tokenizer, token_style, sequence_len = 256):
|
| 43 |
+
"""Process a batch of text sequences - matches your conversion code logic"""
|
| 44 |
+
batch_data = []
|
| 45 |
+
|
| 46 |
+
for text in texts:
|
| 47 |
+
encoded = get_encoded_input_single(text, tokenizer, token_style, sequence_len)
|
| 48 |
+
batch_data.append(encoded)
|
| 49 |
+
|
| 50 |
+
# Stack all sequences into batch tensors
|
| 51 |
+
batch_input_values = torch.tensor([item['input_values'] for item in batch_data])
|
| 52 |
+
batch_attention_mask = torch.tensor([item['attention_mask'] for item in batch_data])
|
| 53 |
+
batch_y_mask = torch.tensor([item['y_mask'] for item in batch_data])
|
| 54 |
+
|
| 55 |
+
encoded_input = {
|
| 56 |
+
'input_values': batch_input_values,
|
| 57 |
+
'attention_mask': batch_attention_mask,
|
| 58 |
+
'y_mask': batch_y_mask
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
return encoded_input
|
| 62 |
+
|
| 63 |
+
def run_onnx_inference(input_values, attention_mask, session):
|
| 64 |
+
"""Run ONNX inference with the unified model"""
|
| 65 |
+
# Get input/output names
|
| 66 |
+
input_values_name = session.get_inputs()[0].name
|
| 67 |
+
attention_mask_name = session.get_inputs()[1].name
|
| 68 |
+
output_name = session.get_outputs()[0].name
|
| 69 |
+
|
| 70 |
+
# Prepare inputs for ONNX (convert to numpy)
|
| 71 |
+
inputs = {
|
| 72 |
+
input_values_name: input_values.cpu().numpy(),
|
| 73 |
+
attention_mask_name: attention_mask.cpu().numpy()
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Run inference
|
| 77 |
+
output = session.run([output_name], inputs)
|
| 78 |
+
predictions = torch.tensor(output[0]) # Shape: [batch_size, seq_len, num_classes]
|
| 79 |
+
predictions = torch.argmax(predictions, dim=2) # Shape: [batch_size, seq_len]
|
| 80 |
+
|
| 81 |
+
return predictions
|
| 82 |
+
|
| 83 |
+
def get_transcription_batch(texts, session, tokenizer, device, token_style):
|
| 84 |
+
"""Process multiple texts and return punctuated results"""
|
| 85 |
+
|
| 86 |
+
# Prepare batch data
|
| 87 |
+
encoded_batch = get_encoded_input_batch(texts, tokenizer, token_style)
|
| 88 |
+
|
| 89 |
+
# Move to device
|
| 90 |
+
input_values = encoded_batch['input_values'].to(device)
|
| 91 |
+
attention_mask = encoded_batch['attention_mask'].to(device)
|
| 92 |
+
y_masks = encoded_batch['y_mask']
|
| 93 |
+
|
| 94 |
+
# Run batch inference
|
| 95 |
+
predictions = run_onnx_inference(input_values, attention_mask, session)
|
| 96 |
+
|
| 97 |
+
# Post-process results for each text
|
| 98 |
+
results = []
|
| 99 |
+
for text_idx, text in enumerate(texts):
|
| 100 |
+
words_original_case = text.split()
|
| 101 |
+
y_mask = y_masks[text_idx]
|
| 102 |
+
y_predict = predictions[text_idx]
|
| 103 |
+
|
| 104 |
+
result = ""
|
| 105 |
+
decode_idx = 0
|
| 106 |
+
|
| 107 |
+
for i in range(y_mask.shape[0]):
|
| 108 |
+
if y_mask[i] == 1 and decode_idx < len(words_original_case):
|
| 109 |
+
result += words_original_case[decode_idx] + punctuation_map[y_predict[i].item()] + ' '
|
| 110 |
+
decode_idx += 1
|
| 111 |
+
|
| 112 |
+
results.append(result.strip())
|
| 113 |
+
|
| 114 |
+
return results
|
| 115 |
+
|
| 116 |
+
def get_transcription(text_or_texts, session, tokenizer, device, token_style):
|
| 117 |
+
"""
|
| 118 |
+
Main function that handles both single text and batch processing
|
| 119 |
+
Uses the unified ONNX model for both cases
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
text_or_texts: Single text string or list of text strings
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
Single punctuated string or list of punctuated strings
|
| 126 |
+
"""
|
| 127 |
+
if isinstance(text_or_texts, str):
|
| 128 |
+
return get_transcription_batch([text_or_texts], session, tokenizer, device, token_style)
|
| 129 |
+
elif isinstance(text_or_texts, list):
|
| 130 |
+
return get_transcription_batch(text_or_texts, session, tokenizer, device, token_style)
|
| 131 |
+
else:
|
| 132 |
+
raise ValueError("Input must be either a string or a list of strings")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
if __name__ == '__main__':
|
| 136 |
+
import time
|
| 137 |
+
|
| 138 |
+
test_text = 'ক্রিকেট বিশ্বের কাছে নিজের আগামীবার তা ভালো���াবেই পৌঁছে দিলেন পাকিস্তানের পেসার আমের জামান চতুর্দশ পাকিস্তানি বোলার হিসেবে অভিষেকেই তুলে নিলেন ছয় উইকেট'
|
| 139 |
+
|
| 140 |
+
print("Testing single text processing:")
|
| 141 |
+
print("=" * 50)
|
| 142 |
+
|
| 143 |
+
# Test single text processing
|
| 144 |
+
for i in range(3):
|
| 145 |
+
start_time = time.time()
|
| 146 |
+
result = get_transcription(test_text)
|
| 147 |
+
end_time = time.time()
|
| 148 |
+
print(f"Run {i+1}: {end_time - start_time:.4f}s")
|
| 149 |
+
|
| 150 |
+
print(f"\nSingle result: {result[:100]}...")
|
| 151 |
+
|
| 152 |
+
print("\nTesting batch text processing:")
|
| 153 |
+
print("=" * 50)
|
| 154 |
+
|
| 155 |
+
# Test batch processing
|
| 156 |
+
batch_texts = [
|
| 157 |
+
'ক্রিকেট বিশ্বের কাছে নিজের আগামীবার তা ভালোভাবেই পৌঁছে দিলেন পাকিস্তানের পেসার আমের জামান চতুর্দশ পাকিস্তানি বোলার হিসেবে অভিষেকেই তুলে নিলেন ছয় উইকেট',
|
| 158 |
+
'ক্রিকেট বিশ্বের কাছে নিজের আগামীবার তা ভালোভাবেই পৌঁছে দিলেন পাকিস্তানের পেসার আমের জামান চতুর্দশ পাকিস্তানি বোলার হিসেবে অভিষেকেই তুলে নিলেন ছয় উইকেট',
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
start_time = time.time()
|
| 162 |
+
batch_results = get_transcription(batch_texts)
|
| 163 |
+
end_time = time.time()
|
| 164 |
+
|
| 165 |
+
print(f"Batch processing time: {end_time - start_time:.4f}s")
|
| 166 |
+
print(f"Processed {len(batch_texts)} texts")
|
| 167 |
+
print(f"Average time per text: {(end_time - start_time) / len(batch_texts):.4f}s")
|
| 168 |
+
|
| 169 |
+
for i, result in enumerate(batch_results):
|
| 170 |
+
print(f"Text {i+1}: {result[:50]}...")
|
| 171 |
+
|
| 172 |
+
|
poc_onnx_model_punctuation_batch.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72f36708c26dee2494269930d59e64e09f142ee2749082806b6fc5fb6d13e511
|
| 3 |
+
size 576918507
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.20.1
|
| 2 |
+
gradio
|
| 3 |
+
requests
|
| 4 |
+
pandas
|
| 5 |
+
fastapi
|
| 6 |
+
uvicorn
|
| 7 |
+
onnxruntime-gpu
|
| 8 |
+
numpy
|
| 9 |
+
sacremoses==0.1.1
|