abdullah123456's picture
Uploading app.py file
bc4347b verified
raw
history blame
2.25 kB
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Defining the model path relative to the repository root.
model_path = "abdullah123456/NLP_Project"
# Loading the model and tokenizer from the local directory.
# The parameter `local_files_only=True` ensures that the files are loaded from the repository.
model = AutoModelForSequenceClassification.from_pretrained(model_path, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
# Defining a simple text cleaning function
def clean_text(text):
return " ".join(text.split())
# Defining the prediction function that the web interface will use.
def predict_sentiment(tweet: str) -> str:
# Cleaning the tweet
tweet_clean = clean_text(tweet)
# Tokenizing the tweet.
inputs = tokenizer(tweet_clean, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
# Moving the input tensors to the same device as the model.
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# Getting the predicted class index.
predicted_class = torch.argmax(outputs.logits, dim=1).item()
# Defining label mapping.
label_mapping = {0: "negative", 1: "neutral", 2: "positive"}
return label_mapping.get(predicted_class, "unknown")
# Creating the Gradio Interface.
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(lines=4, placeholder="Enter an Urdu tweet here...", label="Urdu Tweet"),
outputs=gr.Textbox(label="Predicted Sentiment"),
title="Urdu Tweet Sentiment Analysis",
description="This app uses a fine-tuned transformer model to predict the sentiment of Urdu tweets. "
"Enter your tweet in the textbox below and click 'Submit' to see the prediction.",
examples=[
["السلام علیکم! آج کا دن بہت خوبصورت ہے۔"],
["میں بہت غمگین ہوں، دل بہت دکھ رہا ہے۔"],
["آپ کا کام بہت اچھا ہے!"]
]
)
# Launching the interface.
if __name__ == "__main__":
iface.launch()