|
import gradio as gr
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
model_path = "abdullah123456/NLP_Project"
|
|
|
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_path, local_files_only=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
|
|
|
|
|
def clean_text(text):
|
|
return " ".join(text.split())
|
|
|
|
|
|
def predict_sentiment(tweet: str) -> str:
|
|
|
|
|
|
tweet_clean = clean_text(tweet)
|
|
|
|
|
|
inputs = tokenizer(tweet_clean, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
|
|
|
|
|
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
|
|
|
|
|
label_mapping = {0: "negative", 1: "neutral", 2: "positive"}
|
|
return label_mapping.get(predicted_class, "unknown")
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict_sentiment,
|
|
inputs=gr.Textbox(lines=4, placeholder="Enter an Urdu tweet here...", label="Urdu Tweet"),
|
|
outputs=gr.Textbox(label="Predicted Sentiment"),
|
|
title="Urdu Tweet Sentiment Analysis",
|
|
description="This app uses a fine-tuned transformer model to predict the sentiment of Urdu tweets. "
|
|
"Enter your tweet in the textbox below and click 'Submit' to see the prediction.",
|
|
examples=[
|
|
["السلام علیکم! آج کا دن بہت خوبصورت ہے۔"],
|
|
["میں بہت غمگین ہوں، دل بہت دکھ رہا ہے۔"],
|
|
["آپ کا کام بہت اچھا ہے!"]
|
|
]
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |