import re from remove_astricks import remove_ast from typing import List from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import OpenAI from load_model import call_palm from calling_apis import google_api_key, openai_api_key def outlines_generator(idea : str, keywords : str, language='En', creativity='Original', model_name='Google Palm 2') -> str: ''' Description: The outlines_generator() function designed to generate an outline for an article based on a given idea and a set of keywords. The function leverages an LLM model to create a structured outline with section headings. ''' ''' Parameters: idea (str): The main idea or topic of the article for which you want to generate an outline. keywords (str): A set of keywords or topic-related terms that will be used as section headings in the outline. These headings help organize the content and provide a structure for the article. language (str): Opitonal Parameter -> The language of the model. creativity (str): Optional Parameter -> Controling the randomness of the model. Default value is Original model_name (str): Optional Parameter -> select the LLM model. Default Value is Google Palm 2 ''' ''' Returns: outlines (str): The generated outline for the article, including section headings and placeholders for content under each heading. ''' temp = 0 if creativity == 'Original': temp = 0 elif creativity == 'Balanced': temp = 0.25 elif creativity == 'Creative': temp = 0.5 elif creativity == 'Spirited': temp = 0.75 elif creativity == 'Visionary': temp = 1 if model_name == 'Google Palm 2': llm = call_palm(google_api_key, temperature=temp) elif model_name == 'GPT-3.5': llm = OpenAI(model_name='gpt-3.5-turbo', openai_api_key=openai_api_key, temperature=temp) elif model_name == 'GPT-4': llm = OpenAI(model_name='gpt-4', openai_api_key=openai_api_key, temperature=temp) if language == 'En': outlines_prompt = f"Generate an outline with at least 10 main points for an article on {idea}. Include key points related to {keywords}.\nBe creative and innovation in each main topic" outlines_promptTemp = PromptTemplate( input_variables=["text_input"], template="You are a professional writer\n\n{text_input}\n\nOutline (number each main point with roman numerals):") elif language == 'Ar': outlines_prompt = f"قم بتوليد مخطط تفصيلي يحتوي على ما لا يقل عن ١٠ نقاط رئيسية لمقال حول {idea}. وضمّن النقاط الرئيسية المتعلقة بـ {keywords}.\nكن مبدعًا ومبتكرًا في كل موضوع رئيسي." outlines_promptTemp = PromptTemplate( input_variables=["text_input"], template="أنت كاتب محترف\n\n{text_input}\n\nالخطوط العريضة (عد كل نقطة رئيسية بأرقام رومانية):") outlines_extraction_chain = LLMChain(llm=llm, prompt=outlines_promptTemp) outlines = outlines_extraction_chain.run(outlines_prompt) return outlines def filtered_outlines(outline : str) -> List[str]: ''' Description: This function processes an outline text by splitting it into sections based on Roman numeral patterns followed by a dot and space. It then generates a list of formatted sections. Parameters: `outline` -> Required: (str) The input outline text to be processed. Return: `sections`: (list) A list containing sections of the outline formatted with Arabic numerals (1, 2, 3, ...) and concatenated with their corresponding section content. ''' sections = re.split(r'\b[IVXL]+\.\s', outline)[1:] sections = [f"{i}. {section}" for i, section in enumerate(sections, start=1)] return sections