Spaces:
Sleeping
Sleeping
import os | |
from langchain_core.messages import HumanMessage | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import streamlit as st | |
# Set your Google API Key as an environment variable | |
os.environ["GOOGLE_API_KEY"] = "AIzaSyChEm29X1Pd8SzXh0OFJPu7SN-JPRi0My8" | |
def generate_response(contents, model_name="gemini-pro"): | |
try: | |
# Create the AI model with the specified name | |
model = ChatGoogleGenerativeAI(model=model_name) | |
# Create a HumanMessage with the content | |
message = HumanMessage(content=contents) | |
# Stream the model's response | |
response = model.stream([message]) | |
# Collect and return the response | |
response_text = "" | |
for chunk in response: | |
response_text += chunk.content | |
return response_text | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Streamlit app | |
st.title("AI Chat with Google Generative AI") | |
st.write("This is a chat application using Google Generative AI with the Gemini model.") | |
# Initialize session state for chat history | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
# Text input for user to enter a message | |
user_input = st.text_input("You:", "") | |
# Button to submit the message | |
if st.button("Send"): | |
if user_input: | |
# Generate AI response | |
response = generate_response(user_input) | |
# Add user message and AI response to chat history | |
st.session_state['chat_history'].append(("You", user_input)) | |
st.session_state['chat_history'].append(("AI", response)) | |
# Clear the input box after sending the message | |
user_input = "" | |
else: | |
st.write("Please enter a message.") | |
# Display the chat history | |
if st.session_state['chat_history']: | |
for sender, message in st.session_state['chat_history']: | |
st.write(f"{sender}: {message}") | |