Spaces:
Sleeping
Sleeping
Btr4k
commited on
Commit
Β·
fec6b6f
1
Parent(s):
e950521
Initial commit: YOLO detection app
Browse files- .gitignore +4 -0
- README.md +13 -11
- app.py +192 -0
- logo-h.png +0 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Add these to .gitignore
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
4 |
+
*.pyc
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
|
2 |
-
title: Yolov8 Object Detection
|
3 |
-
emoji: π
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.16.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLO Object Detection App
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This application uses YOLOv8 to perform object detection on images and videos.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
- Support for both image and video uploads
|
7 |
+
- Real-time object detection
|
8 |
+
- Progress tracking for video processing
|
9 |
+
- Easy-to-use interface
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
1. Upload an image or video file
|
13 |
+
2. Wait for processing
|
14 |
+
3. View detection results
|
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the YOLOv8 model
|
10 |
+
model = YOLO('yolov8n.pt')
|
11 |
+
|
12 |
+
def process_image(image):
|
13 |
+
results = model(image)
|
14 |
+
# Get detection information
|
15 |
+
boxes = results[0].boxes
|
16 |
+
detection_info = []
|
17 |
+
for box in boxes:
|
18 |
+
class_id = int(box.cls[0])
|
19 |
+
class_name = results[0].names[class_id]
|
20 |
+
confidence = float(box.conf[0])
|
21 |
+
detection_info.append(f"{class_name}: {confidence:.2%}")
|
22 |
+
|
23 |
+
return Image.fromarray(results[0].plot()), "\n".join(detection_info)
|
24 |
+
|
25 |
+
def process_video(video_path):
|
26 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
27 |
+
output_path = temp_file.name
|
28 |
+
|
29 |
+
cap = cv2.VideoCapture(video_path)
|
30 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
31 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
32 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
33 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
34 |
+
|
35 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
36 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
37 |
+
|
38 |
+
detection_summary = []
|
39 |
+
frame_count = 0
|
40 |
+
|
41 |
+
try:
|
42 |
+
while cap.isOpened():
|
43 |
+
ret, frame = cap.read()
|
44 |
+
if not ret:
|
45 |
+
break
|
46 |
+
|
47 |
+
frame_count += 1
|
48 |
+
results = model(frame)
|
49 |
+
|
50 |
+
# Collect detection information for this frame
|
51 |
+
if frame_count % int(fps) == 0: # Sample every second
|
52 |
+
for box in results[0].boxes:
|
53 |
+
class_id = int(box.cls[0])
|
54 |
+
class_name = results[0].names[class_id]
|
55 |
+
detection_summary.append(class_name)
|
56 |
+
|
57 |
+
annotated_frame = results[0].plot()
|
58 |
+
out.write(annotated_frame)
|
59 |
+
|
60 |
+
finally:
|
61 |
+
cap.release()
|
62 |
+
out.release()
|
63 |
+
|
64 |
+
# Create summary of detected objects
|
65 |
+
if detection_summary:
|
66 |
+
from collections import Counter
|
67 |
+
counts = Counter(detection_summary)
|
68 |
+
summary = "\n".join([f"{obj}: {count} occurrences" for obj, count in counts.most_common()])
|
69 |
+
else:
|
70 |
+
summary = "No objects detected"
|
71 |
+
|
72 |
+
return output_path, summary
|
73 |
+
|
74 |
+
def detect_objects(media):
|
75 |
+
if media is None:
|
76 |
+
return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
|
77 |
+
|
78 |
+
try:
|
79 |
+
if isinstance(media, str) and media.lower().endswith(('.mp4', '.avi', '.mov')):
|
80 |
+
output_video, detection_summary = process_video(media)
|
81 |
+
return (None, output_video, detection_summary,
|
82 |
+
"β
Video processing complete! Check the detection summary below.",
|
83 |
+
gr.update(visible=False), gr.update(visible=True))
|
84 |
+
else:
|
85 |
+
if isinstance(media, str):
|
86 |
+
image = cv2.imread(media)
|
87 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
88 |
+
else:
|
89 |
+
image = media
|
90 |
+
processed_image, detection_info = process_image(image)
|
91 |
+
return (processed_image, None, detection_info,
|
92 |
+
"β
Image processing complete! Check the detections below.",
|
93 |
+
gr.update(visible=True), gr.update(visible=False))
|
94 |
+
except Exception as e:
|
95 |
+
return None, None, None, f"β Error: {str(e)}", gr.update(visible=False), gr.update(visible=False)
|
96 |
+
|
97 |
+
# Custom CSS for styling
|
98 |
+
custom_css = """
|
99 |
+
#app-container {
|
100 |
+
max-width: 1200px;
|
101 |
+
margin: 0 auto;
|
102 |
+
padding: 20px;
|
103 |
+
}
|
104 |
+
|
105 |
+
#logo-img {
|
106 |
+
display: block;
|
107 |
+
margin: 0 auto;
|
108 |
+
max-height: 100px;
|
109 |
+
margin-bottom: 20px;
|
110 |
+
}
|
111 |
+
|
112 |
+
.upload-box {
|
113 |
+
border: 2px dashed #ccc;
|
114 |
+
padding: 20px;
|
115 |
+
text-align: center;
|
116 |
+
border-radius: 8px;
|
117 |
+
background-color: #f8f9fa;
|
118 |
+
margin: 20px 0;
|
119 |
+
}
|
120 |
+
|
121 |
+
.results-container {
|
122 |
+
background-color: #ffffff;
|
123 |
+
border-radius: 8px;
|
124 |
+
padding: 15px;
|
125 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
126 |
+
margin-top: 20px;
|
127 |
+
}
|
128 |
+
|
129 |
+
.detection-info {
|
130 |
+
background-color: #f8f9fa;
|
131 |
+
padding: 15px;
|
132 |
+
border-radius: 8px;
|
133 |
+
margin-top: 10px;
|
134 |
+
font-family: monospace;
|
135 |
+
}
|
136 |
+
"""
|
137 |
+
|
138 |
+
# Create Gradio interface
|
139 |
+
with gr.Blocks(css=custom_css) as demo:
|
140 |
+
with gr.Column(elem_id="app-container"):
|
141 |
+
# Logo and Header
|
142 |
+
gr.HTML(
|
143 |
+
"""
|
144 |
+
<div style="text-align: center; margin-bottom: 1rem">
|
145 |
+
<img src="logo-h.png" id="logo-img" alt="Logo">
|
146 |
+
</div>
|
147 |
+
"""
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Column():
|
151 |
+
gr.Markdown("# π Object Detection")
|
152 |
+
|
153 |
+
# Upload Section
|
154 |
+
with gr.Column(elem_classes="upload-box"):
|
155 |
+
gr.Markdown("### π€ Upload your file")
|
156 |
+
input_media = gr.File(
|
157 |
+
label="Drag and drop or click to upload (Images: jpg, jpeg, png | Videos: mp4, avi, mov)",
|
158 |
+
file_types=["image", "video"]
|
159 |
+
)
|
160 |
+
|
161 |
+
# Status Message
|
162 |
+
status_text = gr.Textbox(
|
163 |
+
label="Status",
|
164 |
+
value="Waiting for upload...",
|
165 |
+
interactive=False
|
166 |
+
)
|
167 |
+
|
168 |
+
# Detection Information
|
169 |
+
detection_info = gr.Textbox(
|
170 |
+
label="Detection Results",
|
171 |
+
elem_classes="detection-info",
|
172 |
+
interactive=False
|
173 |
+
)
|
174 |
+
|
175 |
+
# Results Section
|
176 |
+
with gr.Column(elem_classes="results-container"):
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column(visible=False) as image_column:
|
179 |
+
output_image = gr.Image(label="Detected Objects")
|
180 |
+
with gr.Column(visible=False) as video_column:
|
181 |
+
output_video = gr.Video(label="Processed Video")
|
182 |
+
|
183 |
+
# Handle file upload
|
184 |
+
input_media.upload(
|
185 |
+
fn=detect_objects,
|
186 |
+
inputs=[input_media],
|
187 |
+
outputs=[output_image, output_video, detection_info, status_text,
|
188 |
+
image_column, video_column]
|
189 |
+
)
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
demo.launch(share=True)
|
logo-h.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
ultralytics>=8.0.0
|
3 |
+
torch>=2.0.0
|
4 |
+
Pillow>=9.0.0
|
5 |
+
opencv-python>=4.8.0
|
6 |
+
numpy>=1.24.0
|