Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,15 @@ import cv2
|
|
5 |
import numpy as np
|
6 |
import tempfile
|
7 |
import os
|
|
|
8 |
|
9 |
# Load the YOLOv8 model
|
10 |
model = YOLO('yolov8n.pt')
|
11 |
|
12 |
def process_image(image):
|
|
|
|
|
|
|
13 |
results = model(image)
|
14 |
# Get detection information
|
15 |
boxes = results[0].boxes
|
@@ -23,6 +27,9 @@ def process_image(image):
|
|
23 |
return Image.fromarray(results[0].plot()), "\n".join(detection_info)
|
24 |
|
25 |
def process_video(video_path):
|
|
|
|
|
|
|
26 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
27 |
output_path = temp_file.name
|
28 |
|
@@ -72,6 +79,9 @@ def process_video(video_path):
|
|
72 |
return output_path, summary
|
73 |
|
74 |
def detect_objects(media):
|
|
|
|
|
|
|
75 |
if media is None:
|
76 |
return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
|
77 |
|
@@ -103,8 +113,6 @@ custom_css = """
|
|
103 |
}
|
104 |
|
105 |
#logo-img {
|
106 |
-
display: block;
|
107 |
-
margin: 0 auto;
|
108 |
max-height: 100px;
|
109 |
margin-bottom: 20px;
|
110 |
}
|
@@ -133,45 +141,50 @@ custom_css = """
|
|
133 |
margin-top: 10px;
|
134 |
font-family: monospace;
|
135 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
"""
|
137 |
|
138 |
# Create Gradio interface
|
139 |
with gr.Blocks(css=custom_css) as demo:
|
140 |
with gr.Column(elem_id="app-container"):
|
141 |
# Logo and Header
|
142 |
-
gr.
|
143 |
-
""
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
file_types=["image", "video"]
|
159 |
-
)
|
160 |
-
|
161 |
-
# Status Message
|
162 |
-
status_text = gr.Textbox(
|
163 |
-
label="Status",
|
164 |
-
value="Waiting for upload...",
|
165 |
-
interactive=False
|
166 |
-
)
|
167 |
-
|
168 |
-
# Detection Information
|
169 |
-
detection_info = gr.Textbox(
|
170 |
-
label="Detection Results",
|
171 |
-
elem_classes="detection-info",
|
172 |
-
interactive=False
|
173 |
)
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# Results Section
|
176 |
with gr.Column(elem_classes="results-container"):
|
177 |
with gr.Row():
|
@@ -180,13 +193,19 @@ with gr.Blocks(css=custom_css) as demo:
|
|
180 |
with gr.Column(visible=False) as video_column:
|
181 |
output_video = gr.Video(label="Processed Video")
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
demo.launch(share=True)
|
|
|
5 |
import numpy as np
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
from pathlib import Path
|
9 |
|
10 |
# Load the YOLOv8 model
|
11 |
model = YOLO('yolov8n.pt')
|
12 |
|
13 |
def process_image(image):
|
14 |
+
"""
|
15 |
+
Process a single image for object detection
|
16 |
+
"""
|
17 |
results = model(image)
|
18 |
# Get detection information
|
19 |
boxes = results[0].boxes
|
|
|
27 |
return Image.fromarray(results[0].plot()), "\n".join(detection_info)
|
28 |
|
29 |
def process_video(video_path):
|
30 |
+
"""
|
31 |
+
Process video for object detection
|
32 |
+
"""
|
33 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
34 |
output_path = temp_file.name
|
35 |
|
|
|
79 |
return output_path, summary
|
80 |
|
81 |
def detect_objects(media):
|
82 |
+
"""
|
83 |
+
Unified function to handle both image and video inputs
|
84 |
+
"""
|
85 |
if media is None:
|
86 |
return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
|
87 |
|
|
|
113 |
}
|
114 |
|
115 |
#logo-img {
|
|
|
|
|
116 |
max-height: 100px;
|
117 |
margin-bottom: 20px;
|
118 |
}
|
|
|
141 |
margin-top: 10px;
|
142 |
font-family: monospace;
|
143 |
}
|
144 |
+
|
145 |
+
.center {
|
146 |
+
display: flex;
|
147 |
+
justify-content: center;
|
148 |
+
align-items: center;
|
149 |
+
margin-bottom: 1rem;
|
150 |
+
}
|
151 |
"""
|
152 |
|
153 |
# Create Gradio interface
|
154 |
with gr.Blocks(css=custom_css) as demo:
|
155 |
with gr.Column(elem_id="app-container"):
|
156 |
# Logo and Header
|
157 |
+
with gr.Column(elem_classes="center"):
|
158 |
+
gr.Image("logo-h.png",
|
159 |
+
show_label=False,
|
160 |
+
container=False,
|
161 |
+
elem_id="logo-img",
|
162 |
+
height=100)
|
|
|
163 |
|
164 |
+
gr.Markdown("# π Object Detection")
|
165 |
+
|
166 |
+
# Upload Section
|
167 |
+
with gr.Column(elem_classes="upload-box"):
|
168 |
+
gr.Markdown("### π€ Upload your file")
|
169 |
+
input_media = gr.File(
|
170 |
+
label="Drag and drop or click to upload (Images: jpg, jpeg, png | Videos: mp4, avi, mov)",
|
171 |
+
file_types=["image", "video"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
)
|
173 |
|
174 |
+
# Status Message
|
175 |
+
status_text = gr.Textbox(
|
176 |
+
label="Status",
|
177 |
+
value="Waiting for upload...",
|
178 |
+
interactive=False
|
179 |
+
)
|
180 |
+
|
181 |
+
# Detection Information
|
182 |
+
detection_info = gr.Textbox(
|
183 |
+
label="Detection Results",
|
184 |
+
elem_classes="detection-info",
|
185 |
+
interactive=False
|
186 |
+
)
|
187 |
+
|
188 |
# Results Section
|
189 |
with gr.Column(elem_classes="results-container"):
|
190 |
with gr.Row():
|
|
|
193 |
with gr.Column(visible=False) as video_column:
|
194 |
output_video = gr.Video(label="Processed Video")
|
195 |
|
196 |
+
# Handle file upload
|
197 |
+
input_media.upload(
|
198 |
+
fn=detect_objects,
|
199 |
+
inputs=[input_media],
|
200 |
+
outputs=[
|
201 |
+
output_image,
|
202 |
+
output_video,
|
203 |
+
detection_info,
|
204 |
+
status_text,
|
205 |
+
image_column,
|
206 |
+
video_column
|
207 |
+
]
|
208 |
+
)
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
demo.launch(share=True)
|