File size: 9,732 Bytes
f77f85c
 
a9c27e2
f77f85c
 
 
 
 
 
 
 
 
 
a9c27e2
f77f85c
 
 
 
 
 
 
 
 
 
 
 
 
a9c27e2
f77f85c
 
 
 
 
 
 
 
a9c27e2
f77f85c
 
 
a9c27e2
 
 
 
 
 
f77f85c
 
 
 
a9c27e2
 
 
 
 
 
f77f85c
 
 
 
a9c27e2
 
 
 
 
 
f77f85c
 
 
a9c27e2
f77f85c
 
 
 
 
 
a9c27e2
f77f85c
a9c27e2
 
 
 
 
 
 
 
 
 
f77f85c
 
 
a9c27e2
 
 
 
 
f77f85c
a9c27e2
 
f77f85c
a9c27e2
f77f85c
a9c27e2
f77f85c
a9c27e2
f77f85c
a9c27e2
f77f85c
a9c27e2
 
 
f77f85c
 
 
 
 
 
 
 
 
 
 
a9c27e2
 
f77f85c
 
 
 
 
a9c27e2
f77f85c
 
 
a9c27e2
 
 
 
 
 
f77f85c
 
a9c27e2
 
 
 
 
 
 
 
 
 
 
 
 
f77f85c
 
a9c27e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77f85c
a9c27e2
 
 
 
 
 
 
 
 
f77f85c
a9c27e2
 
 
 
 
 
 
 
 
 
 
 
f77f85c
 
 
 
 
 
a9c27e2
f77f85c
 
 
 
 
 
 
 
 
 
 
a9c27e2
f77f85c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
from transformers import pipeline
import numpy as np

# Initialize pipelines
ocr = pipeline("image-to-text", model="microsoft/trocr-base-printed")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Common phishing indicators
SUSPICIOUS_PHRASES = [
    "urgent", "immediately", "password", "account locked", "wire transfer",
    "bank verification", "click here", "verification code", "credit card",
    "suspended", "login now", "reset your password", "act now", "unusual activity",
    "security alert", "confirm your identity", "gift card", "lottery winner"
]

def extract_text_from_image(image):
    if image is None:
        return ""
    try:
        result = ocr(image)
        return result[0]["generated_text"] if result else ""
    except Exception as e:
        return f"Error processing image: {str(e)}"

def analyze_text(text):
    if not text.strip():
        return "", "", gr.update(visible=False)
    
    # Zero-shot Classification
    candidate_labels = ["Phishing Email", "Legitimate Email"]
    result = classifier(text, candidate_labels=candidate_labels)
    
    label = result["labels"][0]
    confidence = result["scores"][0]
    
    # Determine risk level and styling
    if label == "Phishing Email":
        if confidence > 0.8:
            alert_html = """
                <div style="padding: 20px; background: linear-gradient(to right, #ffebee, #ffcdd2); 
                     border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
                    <div style="display: flex; align-items: center; gap: 12px;">
                        <span style="font-size: 24px;">⚠️</span>
                        <h3 style="color: #c62828; margin: 0; font-size: 18px;">High Risk Detected - Likely Phishing Attempt</h3>
                    </div>
                </div>
            """
        else:
            alert_html = """
                <div style="padding: 20px; background: linear-gradient(to right, #fff3e0, #ffe0b2); 
                     border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
                    <div style="display: flex; align-items: center; gap: 12px;">
                        <span style="font-size: 24px;">⚑</span>
                        <h3 style="color: #ef6c00; margin: 0; font-size: 18px;">Medium Risk - Suspicious Content Detected</h3>
                    </div>
                </div>
            """
    else:
        alert_html = """
            <div style="padding: 20px; background: linear-gradient(to right, #e8f5e9, #c8e6c9); 
                 border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
                <div style="display: flex; align-items: center; gap: 12px;">
                    <span style="font-size: 24px;">βœ…</span>
                    <h3 style="color: #2e7d32; margin: 0; font-size: 18px;">Low Risk - Likely Legitimate</h3>
                </div>
            </div>
        """
    
    # Find suspicious phrases
    found_phrases = []
    text_lower = text.lower()
    for phrase in SUSPICIOUS_PHRASES:
        if phrase in text_lower:
            found_phrases.append(phrase)
    
    # Generate detailed analysis report with modern styling
    report = [
        "<div style='background: white; padding: 24px; border-radius: 12px; box-shadow: 0 2px 8px rgba(0,0,0,0.05);'>",
        "<h3 style='color: #1a237e; margin-top: 0;'>Analysis Details</h3>",
        f"<div style='display: flex; gap: 20px; margin-bottom: 20px;'>",
        f"<div style='flex: 1; padding: 16px; background: #f5f5f5; border-radius: 8px;'>",
        f"<strong>Confidence Score:</strong> {confidence:.1%}",
        "</div>",
        f"<div style='flex: 1; padding: 16px; background: #f5f5f5; border-radius: 8px;'>",
        f"<strong>Classification:</strong> {label}",
        "</div>",
        "</div>"
    ]
    
    if found_phrases:
        report.extend([
            "<div style='margin-top: 20px;'>",
            "<h4 style='color: #d32f2f;'>🚩 Suspicious Elements Detected:</h4>",
            "<ul style='list-style-type: none; padding-left: 0;'>"
        ])
        for phrase in found_phrases:
            report.append(f"<li style='margin-bottom: 8px; padding: 8px 12px; background: #ffebee; border-radius: 6px;'>Found: '{phrase}'</li>")
        report.append("</ul></div>")
    else:
        report.append("<p style='color: #2e7d32;'>βœ… No common suspicious phrases detected.</p>")
    
    report.append("<div style='margin-top: 20px; padding: 16px; background: #e3f2fd; border-radius: 8px;'>")
    if confidence > 0.9:
        report.append("<p style='margin: 0;'><strong>πŸ”΄ High confidence in classification - exercise extreme caution!</strong></p>")
    elif confidence > 0.7:
        report.append("<p style='margin: 0;'><strong>🟑 Moderate confidence - review carefully and verify sender.</strong></p>")
    else:
        report.append("<p style='margin: 0;'><strong>🟒 Low confidence - but always remain vigilant.</strong></p>")
    report.append("</div></div>")
    
    return alert_html, "\n".join(report), gr.update(visible=True)

def process_input(text_input, image_input):
    if text_input.strip():
        return analyze_text(text_input)
    
    if image_input is not None:
        extracted_text = extract_text_from_image(image_input)
        if extracted_text.strip():
            return analyze_text(extracted_text)
        return (
            """<div style="padding: 20px; background: #fff3e0; border-radius: 12px; margin-bottom: 20px;">
                <h3 style="color: #ef6c00; margin: 0;">⚠️ OCR Processing Error</h3>
            </div>""",
            "Could not extract text from image. Please ensure the image contains clear, readable text.",
            gr.update(visible=False)
        )
    
    return "", "Please provide either text or an image to analyze.", gr.update(visible=False)

# Custom theme
custom_theme = gr.themes.Soft().set(
    body_background_fill="#f8f9fa",
    block_background_fill="white",
    block_label_background_fill="*background-3",
    input_background_fill="white",
    button_primary_background_fill="#1a237e",
    button_primary_text_color="white",
)

# Create Gradio interface with modern design
with gr.Blocks(theme=custom_theme, css="""
    .container { max-width: 1000px; margin: auto; }
    .header { text-align: center; margin-bottom: 2rem; }
    .tool-description { max-width: 800px; margin: 0 auto 2rem auto; }
    .input-section { margin-bottom: 2rem; }
    .analysis-section { margin-top: 2rem; }
""") as demo:
    gr.HTML("""
        <div class="header">
            <h1 style="color: #1a237e; font-size: 2.5rem; margin-bottom: 1rem;">πŸ›‘οΈ AI Phishing Guard</h1>
            <p style="color: #555; font-size: 1.2rem;">Protect yourself from phishing attempts with AI-powered analysis</p>
        </div>
    """)
    
    with gr.Row(equal_height=True):
        with gr.Column():
            gr.HTML("""
                <div class="tool-description">
                    <h3 style="color: #1a237e;">How to Use</h3>
                    <ol style="color: #555; line-height: 1.6;">
                        <li>Either paste message text or upload a screenshot</li>
                        <li>Click 'Analyze' to check for phishing indicators</li>
                        <li>Review the detailed analysis results</li>
                    </ol>
                    <div style="background: #e3f2fd; padding: 16px; border-radius: 8px; margin-top: 1rem;">
                        <h4 style="color: #1a237e; margin-top: 0;">This tool detects:</h4>
                        <ul style="color: #555; margin-bottom: 0;">
                            <li>Suspicious language patterns</li>
                            <li>Common phishing phrases</li>
                            <li>Urgency indicators</li>
                            <li>Security threat language</li>
                        </ul>
                    </div>
                </div>
            """)
    
    with gr.Tabs():
        with gr.TabItem("✏️ Text Input"):
            text_input = gr.Textbox(
                lines=8,
                label="Message Text",
                placeholder="Paste email or message content here...",
                elem_id="text_input"
            )
        
        with gr.TabItem("πŸ“· Screenshot Upload"):
            image_input = gr.Image(
                label="Upload Screenshot",
                type="pil",
                elem_id="image_input"
            )
    
    analyze_button = gr.Button("πŸ” Analyze", variant="primary", size="lg")
    
    with gr.Column(visible=True) as output_col:
        alert_html = gr.HTML()
        analysis = gr.HTML()
    
    # Examples
    examples = [
        ["Subject: URGENT - Account Security Alert\n\nDear User,\n\nWe detected unusual activity in your account. Click here immediately to verify your identity and reset your password. If you don't respond within 24 hours, your account will be suspended.\n\nBank Security Team", None],
        ["Subject: Team Meeting Tomorrow\n\nHi everyone,\n\nJust a reminder that we have our weekly team meeting tomorrow at 10 AM in the main conference room. Please bring your project updates.\n\nBest regards,\nSarah", None],
    ]
    
    gr.Examples(
        examples=examples,
        inputs=[text_input, image_input],
        outputs=[alert_html, analysis],
        fn=process_input,
        cache_examples=True
    )
    
    analyze_button.click(
        fn=process_input,
        inputs=[text_input, image_input],
        outputs=[alert_html, analysis, output_col]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()