Spaces:
Build error
Build error
File size: 9,732 Bytes
f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c a9c27e2 f77f85c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
from transformers import pipeline
import numpy as np
# Initialize pipelines
ocr = pipeline("image-to-text", model="microsoft/trocr-base-printed")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Common phishing indicators
SUSPICIOUS_PHRASES = [
"urgent", "immediately", "password", "account locked", "wire transfer",
"bank verification", "click here", "verification code", "credit card",
"suspended", "login now", "reset your password", "act now", "unusual activity",
"security alert", "confirm your identity", "gift card", "lottery winner"
]
def extract_text_from_image(image):
if image is None:
return ""
try:
result = ocr(image)
return result[0]["generated_text"] if result else ""
except Exception as e:
return f"Error processing image: {str(e)}"
def analyze_text(text):
if not text.strip():
return "", "", gr.update(visible=False)
# Zero-shot Classification
candidate_labels = ["Phishing Email", "Legitimate Email"]
result = classifier(text, candidate_labels=candidate_labels)
label = result["labels"][0]
confidence = result["scores"][0]
# Determine risk level and styling
if label == "Phishing Email":
if confidence > 0.8:
alert_html = """
<div style="padding: 20px; background: linear-gradient(to right, #ffebee, #ffcdd2);
border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
<div style="display: flex; align-items: center; gap: 12px;">
<span style="font-size: 24px;">β οΈ</span>
<h3 style="color: #c62828; margin: 0; font-size: 18px;">High Risk Detected - Likely Phishing Attempt</h3>
</div>
</div>
"""
else:
alert_html = """
<div style="padding: 20px; background: linear-gradient(to right, #fff3e0, #ffe0b2);
border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
<div style="display: flex; align-items: center; gap: 12px;">
<span style="font-size: 24px;">β‘</span>
<h3 style="color: #ef6c00; margin: 0; font-size: 18px;">Medium Risk - Suspicious Content Detected</h3>
</div>
</div>
"""
else:
alert_html = """
<div style="padding: 20px; background: linear-gradient(to right, #e8f5e9, #c8e6c9);
border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); margin-bottom: 20px;">
<div style="display: flex; align-items: center; gap: 12px;">
<span style="font-size: 24px;">β
</span>
<h3 style="color: #2e7d32; margin: 0; font-size: 18px;">Low Risk - Likely Legitimate</h3>
</div>
</div>
"""
# Find suspicious phrases
found_phrases = []
text_lower = text.lower()
for phrase in SUSPICIOUS_PHRASES:
if phrase in text_lower:
found_phrases.append(phrase)
# Generate detailed analysis report with modern styling
report = [
"<div style='background: white; padding: 24px; border-radius: 12px; box-shadow: 0 2px 8px rgba(0,0,0,0.05);'>",
"<h3 style='color: #1a237e; margin-top: 0;'>Analysis Details</h3>",
f"<div style='display: flex; gap: 20px; margin-bottom: 20px;'>",
f"<div style='flex: 1; padding: 16px; background: #f5f5f5; border-radius: 8px;'>",
f"<strong>Confidence Score:</strong> {confidence:.1%}",
"</div>",
f"<div style='flex: 1; padding: 16px; background: #f5f5f5; border-radius: 8px;'>",
f"<strong>Classification:</strong> {label}",
"</div>",
"</div>"
]
if found_phrases:
report.extend([
"<div style='margin-top: 20px;'>",
"<h4 style='color: #d32f2f;'>π© Suspicious Elements Detected:</h4>",
"<ul style='list-style-type: none; padding-left: 0;'>"
])
for phrase in found_phrases:
report.append(f"<li style='margin-bottom: 8px; padding: 8px 12px; background: #ffebee; border-radius: 6px;'>Found: '{phrase}'</li>")
report.append("</ul></div>")
else:
report.append("<p style='color: #2e7d32;'>β
No common suspicious phrases detected.</p>")
report.append("<div style='margin-top: 20px; padding: 16px; background: #e3f2fd; border-radius: 8px;'>")
if confidence > 0.9:
report.append("<p style='margin: 0;'><strong>π΄ High confidence in classification - exercise extreme caution!</strong></p>")
elif confidence > 0.7:
report.append("<p style='margin: 0;'><strong>π‘ Moderate confidence - review carefully and verify sender.</strong></p>")
else:
report.append("<p style='margin: 0;'><strong>π’ Low confidence - but always remain vigilant.</strong></p>")
report.append("</div></div>")
return alert_html, "\n".join(report), gr.update(visible=True)
def process_input(text_input, image_input):
if text_input.strip():
return analyze_text(text_input)
if image_input is not None:
extracted_text = extract_text_from_image(image_input)
if extracted_text.strip():
return analyze_text(extracted_text)
return (
"""<div style="padding: 20px; background: #fff3e0; border-radius: 12px; margin-bottom: 20px;">
<h3 style="color: #ef6c00; margin: 0;">β οΈ OCR Processing Error</h3>
</div>""",
"Could not extract text from image. Please ensure the image contains clear, readable text.",
gr.update(visible=False)
)
return "", "Please provide either text or an image to analyze.", gr.update(visible=False)
# Custom theme
custom_theme = gr.themes.Soft().set(
body_background_fill="#f8f9fa",
block_background_fill="white",
block_label_background_fill="*background-3",
input_background_fill="white",
button_primary_background_fill="#1a237e",
button_primary_text_color="white",
)
# Create Gradio interface with modern design
with gr.Blocks(theme=custom_theme, css="""
.container { max-width: 1000px; margin: auto; }
.header { text-align: center; margin-bottom: 2rem; }
.tool-description { max-width: 800px; margin: 0 auto 2rem auto; }
.input-section { margin-bottom: 2rem; }
.analysis-section { margin-top: 2rem; }
""") as demo:
gr.HTML("""
<div class="header">
<h1 style="color: #1a237e; font-size: 2.5rem; margin-bottom: 1rem;">π‘οΈ AI Phishing Guard</h1>
<p style="color: #555; font-size: 1.2rem;">Protect yourself from phishing attempts with AI-powered analysis</p>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column():
gr.HTML("""
<div class="tool-description">
<h3 style="color: #1a237e;">How to Use</h3>
<ol style="color: #555; line-height: 1.6;">
<li>Either paste message text or upload a screenshot</li>
<li>Click 'Analyze' to check for phishing indicators</li>
<li>Review the detailed analysis results</li>
</ol>
<div style="background: #e3f2fd; padding: 16px; border-radius: 8px; margin-top: 1rem;">
<h4 style="color: #1a237e; margin-top: 0;">This tool detects:</h4>
<ul style="color: #555; margin-bottom: 0;">
<li>Suspicious language patterns</li>
<li>Common phishing phrases</li>
<li>Urgency indicators</li>
<li>Security threat language</li>
</ul>
</div>
</div>
""")
with gr.Tabs():
with gr.TabItem("βοΈ Text Input"):
text_input = gr.Textbox(
lines=8,
label="Message Text",
placeholder="Paste email or message content here...",
elem_id="text_input"
)
with gr.TabItem("π· Screenshot Upload"):
image_input = gr.Image(
label="Upload Screenshot",
type="pil",
elem_id="image_input"
)
analyze_button = gr.Button("π Analyze", variant="primary", size="lg")
with gr.Column(visible=True) as output_col:
alert_html = gr.HTML()
analysis = gr.HTML()
# Examples
examples = [
["Subject: URGENT - Account Security Alert\n\nDear User,\n\nWe detected unusual activity in your account. Click here immediately to verify your identity and reset your password. If you don't respond within 24 hours, your account will be suspended.\n\nBank Security Team", None],
["Subject: Team Meeting Tomorrow\n\nHi everyone,\n\nJust a reminder that we have our weekly team meeting tomorrow at 10 AM in the main conference room. Please bring your project updates.\n\nBest regards,\nSarah", None],
]
gr.Examples(
examples=examples,
inputs=[text_input, image_input],
outputs=[alert_html, analysis],
fn=process_input,
cache_examples=True
)
analyze_button.click(
fn=process_input,
inputs=[text_input, image_input],
outputs=[alert_html, analysis, output_col]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |