Spaces:
Running
Running
abdu-l7hman
commited on
Commit
·
8d3d1a5
1
Parent(s):
0c5d983
Update model to augmented version and add ffmpeg
Browse files- app.py +174 -78
- models/stutter_detector_all_types.pth +2 -2
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,89 +1,196 @@
|
|
| 1 |
from flask import Flask, render_template, request, jsonify
|
| 2 |
-
from flask_cors import CORS
|
| 3 |
import os
|
| 4 |
from werkzeug.utils import secure_filename
|
| 5 |
-
import time
|
| 6 |
-
import sys
|
| 7 |
-
import subprocess
|
| 8 |
import shutil
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
MODEL_DEPS_AVAILABLE = True
|
| 17 |
-
except Exception as e:
|
| 18 |
-
print(f"Model dependencies unavailable: {e}")
|
| 19 |
-
ImprovedStutterDetector = None
|
| 20 |
-
def calculate_stutter_severity(_):
|
| 21 |
-
return None
|
| 22 |
-
MODEL_DEPS_AVAILABLE = False
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
app = Flask(__name__)
|
| 25 |
-
CORS(app)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
UPLOAD_FOLDER = '/tmp/uploads' # Use /tmp because other folders might be read-only on HF
|
| 29 |
ALLOWED_EXTENSIONS = {'wav', 'mp3', 'ogg', 'webm', 'm4a'}
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 33 |
-
app.config['MAX_CONTENT_LENGTH'] =
|
| 34 |
|
| 35 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def allowed_file(filename):
|
| 54 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 55 |
|
| 56 |
-
def convert_to_wav(input_path, output_path):
|
| 57 |
-
try:
|
| 58 |
-
subprocess.run([
|
| 59 |
-
'ffmpeg', '-i', input_path,
|
| 60 |
-
'-acodec', 'pcm_s16le',
|
| 61 |
-
'-ar', '16000',
|
| 62 |
-
'-ac', '1',
|
| 63 |
-
'-y',
|
| 64 |
-
output_path
|
| 65 |
-
], check=True, capture_output=True)
|
| 66 |
-
return True
|
| 67 |
-
except subprocess.CalledProcessError as e:
|
| 68 |
-
print(f"FFmpeg conversion error: {e.stderr.decode()}")
|
| 69 |
-
return False
|
| 70 |
-
except FileNotFoundError:
|
| 71 |
-
return False
|
| 72 |
-
|
| 73 |
-
# ... [Keep your analyze_audio_file function exactly as it is] ...
|
| 74 |
-
# ... [Paste the analyze_audio_file function here from your original code] ...
|
| 75 |
-
|
| 76 |
-
# Route: Only strictly necessary endpoints for your API
|
| 77 |
@app.route('/health', methods=['GET'])
|
| 78 |
def health_check():
|
| 79 |
-
return jsonify({
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
@app.route('/upload', methods=['POST'])
|
| 82 |
def upload_file():
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
if detector is None:
|
| 86 |
-
return jsonify({'error': 'Model not loaded.'}), 500
|
| 87 |
|
| 88 |
if 'audio' not in request.files:
|
| 89 |
return jsonify({'error': 'No audio file provided'}), 400
|
|
@@ -95,20 +202,9 @@ def upload_file():
|
|
| 95 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 96 |
file.save(filepath)
|
| 97 |
|
| 98 |
-
# Get params from request or default
|
| 99 |
-
segment_duration = float(request.form.get('segment_duration', 3.0))
|
| 100 |
-
stutter_threshold = float(request.form.get('stutter_threshold', 0.5))
|
| 101 |
-
|
| 102 |
try:
|
| 103 |
-
# Run analysis
|
| 104 |
-
results =
|
| 105 |
-
filepath,
|
| 106 |
-
segment_duration=segment_duration,
|
| 107 |
-
stutter_threshold=stutter_threshold
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
# Calculate severity
|
| 111 |
-
results['severity'] = calculate_stutter_severity(results)
|
| 112 |
|
| 113 |
# Cleanup
|
| 114 |
if os.path.exists(filepath): os.remove(filepath)
|
|
@@ -116,11 +212,11 @@ def upload_file():
|
|
| 116 |
return jsonify(results), 200
|
| 117 |
|
| 118 |
except Exception as e:
|
|
|
|
| 119 |
if os.path.exists(filepath): os.remove(filepath)
|
| 120 |
return jsonify({'error': str(e)}), 500
|
| 121 |
|
| 122 |
-
return jsonify({'error': 'Invalid file'}), 400
|
| 123 |
|
| 124 |
if __name__ == '__main__':
|
| 125 |
-
# This is only for local testing, Docker uses Gunicorn
|
| 126 |
app.run(host='0.0.0.0', port=7860)
|
|
|
|
| 1 |
from flask import Flask, render_template, request, jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
import os
|
| 4 |
from werkzeug.utils import secure_filename
|
|
|
|
|
|
|
|
|
|
| 5 |
import shutil
|
| 6 |
+
import subprocess
|
| 7 |
+
import sys
|
| 8 |
|
| 9 |
+
# --- ML Imports ---
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import numpy as np
|
| 13 |
+
import librosa
|
| 14 |
+
import transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# ======================================================
|
| 17 |
+
# 1. CONFIGURATION
|
| 18 |
+
# ======================================================
|
| 19 |
app = Flask(__name__)
|
| 20 |
+
CORS(app)
|
| 21 |
|
| 22 |
+
UPLOAD_FOLDER = '/tmp/uploads' # /tmp for read-write permissions on HF Spaces
|
|
|
|
| 23 |
ALLOWED_EXTENSIONS = {'wav', 'mp3', 'ogg', 'webm', 'm4a'}
|
| 24 |
+
# UPDATE THIS TO YOUR NEW FILENAME
|
| 25 |
+
MODEL_PATH = 'models/stutter_detector_attentive_augmented.pth'
|
| 26 |
|
| 27 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 28 |
+
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50MB limit
|
| 29 |
|
| 30 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 31 |
|
| 32 |
+
# ======================================================
|
| 33 |
+
# 2. NEW MODEL ARCHITECTURE
|
| 34 |
+
# ======================================================
|
| 35 |
+
|
| 36 |
+
class AttentiveStatsPool(nn.Module):
|
| 37 |
+
def __init__(self, in_dim, use_std=True):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.use_std = use_std
|
| 40 |
+
self.att = nn.Sequential(
|
| 41 |
+
nn.Linear(in_dim, in_dim // 2),
|
| 42 |
+
nn.Tanh(),
|
| 43 |
+
nn.Linear(in_dim // 2, 1)
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def forward(self, H, mask=None):
|
| 47 |
+
alpha = torch.softmax(self.att(H), dim=1)
|
| 48 |
+
mean = (alpha * H).sum(dim=1)
|
| 49 |
+
ex2 = (alpha * (H ** 2)).sum(dim=1)
|
| 50 |
+
std = torch.sqrt(torch.clamp(ex2 - mean**2, min=1e-6))
|
| 51 |
+
return torch.cat([mean, std], dim=-1)
|
| 52 |
+
|
| 53 |
+
class Wav2VecAttentiveClassifier(nn.Module):
|
| 54 |
+
def __init__(self, hidden_dim=768, output_dim=2):
|
| 55 |
+
super().__init__()
|
| 56 |
+
# Load base wav2vec model
|
| 57 |
+
self.wav2vec = transformers.Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
|
| 58 |
+
|
| 59 |
+
# Freeze wav2vec weights
|
| 60 |
+
for p in self.wav2vec.parameters():
|
| 61 |
+
p.requires_grad = False
|
| 62 |
+
|
| 63 |
+
self.pool = AttentiveStatsPool(hidden_dim, use_std=True)
|
| 64 |
+
|
| 65 |
+
self.classifier = nn.Sequential(
|
| 66 |
+
nn.Linear(hidden_dim * 2, 256),
|
| 67 |
+
nn.BatchNorm1d(256),
|
| 68 |
+
nn.ReLU(),
|
| 69 |
+
nn.Dropout(0.3),
|
| 70 |
+
|
| 71 |
+
nn.Linear(256, 128),
|
| 72 |
+
nn.BatchNorm1d(128),
|
| 73 |
+
nn.ReLU(),
|
| 74 |
+
nn.Dropout(0.3),
|
| 75 |
+
|
| 76 |
+
nn.Linear(128, output_dim)
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
H = self.wav2vec(x).last_hidden_state
|
| 81 |
+
z = self.pool(H)
|
| 82 |
+
return self.classifier(z)
|
| 83 |
+
|
| 84 |
+
# ======================================================
|
| 85 |
+
# 3. INFERENCE HANDLER CLASS
|
| 86 |
+
# ======================================================
|
| 87 |
+
|
| 88 |
+
class StutterInferenceService:
|
| 89 |
+
def __init__(self, model_path):
|
| 90 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 91 |
+
print(f"Loading model using device: {self.device}")
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
self.model = Wav2VecAttentiveClassifier()
|
| 95 |
+
# Load weights
|
| 96 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
| 97 |
+
self.model.load_state_dict(state_dict)
|
| 98 |
+
self.model.to(self.device)
|
| 99 |
+
self.model.eval()
|
| 100 |
+
print("Model loaded successfully.")
|
| 101 |
+
self.loaded = True
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"CRITICAL ERROR LOADING MODEL: {e}")
|
| 104 |
+
self.loaded = False
|
| 105 |
+
|
| 106 |
+
def analyze(self, file_path):
|
| 107 |
+
if not self.loaded:
|
| 108 |
+
raise Exception("Model not loaded")
|
| 109 |
+
|
| 110 |
+
# 1. Load Audio (Force 16kHz)
|
| 111 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
| 112 |
+
|
| 113 |
+
# 2. Define segment parameters
|
| 114 |
+
SEGMENT_LENGTH = 48000 # 3 seconds exactly
|
| 115 |
+
|
| 116 |
+
# 3. Handle Short Audio (Pad if < 3 sec)
|
| 117 |
+
if len(audio) < SEGMENT_LENGTH:
|
| 118 |
+
padding = SEGMENT_LENGTH - len(audio)
|
| 119 |
+
audio = np.pad(audio, (0, padding), 'constant')
|
| 120 |
+
|
| 121 |
+
# 4. Process Logic (Sliding Window or Chunks)
|
| 122 |
+
# We will slice the audio into non-overlapping 3s chunks
|
| 123 |
+
num_chunks = len(audio) // SEGMENT_LENGTH
|
| 124 |
+
results = []
|
| 125 |
+
|
| 126 |
+
stutter_count = 0
|
| 127 |
+
|
| 128 |
+
for i in range(num_chunks):
|
| 129 |
+
start = i * SEGMENT_LENGTH
|
| 130 |
+
end = start + SEGMENT_LENGTH
|
| 131 |
+
chunk = audio[start:end]
|
| 132 |
+
|
| 133 |
+
# Preprocess for Pytorch
|
| 134 |
+
# Shape: (1, 48000)
|
| 135 |
+
tensor_input = torch.tensor(chunk).float().unsqueeze(0).to(self.device)
|
| 136 |
+
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
logits = self.model(tensor_input)
|
| 139 |
+
probs = torch.softmax(logits, dim=1)
|
| 140 |
+
|
| 141 |
+
# Assuming Class 1 = Stutter, Class 0 = Fluent
|
| 142 |
+
# Check your training labels! Usually 1 is the positive class.
|
| 143 |
+
stutter_prob = probs[0][1].item()
|
| 144 |
+
prediction = torch.argmax(probs, dim=1).item()
|
| 145 |
+
|
| 146 |
+
label = "Stutter" if prediction == 1 else "Fluent"
|
| 147 |
+
if prediction == 1:
|
| 148 |
+
stutter_count += 1
|
| 149 |
+
|
| 150 |
+
results.append({
|
| 151 |
+
"segment_id": i,
|
| 152 |
+
"start_time": i * 3.0,
|
| 153 |
+
"end_time": (i + 1) * 3.0,
|
| 154 |
+
"probability": float(stutter_prob),
|
| 155 |
+
"label": label
|
| 156 |
+
})
|
| 157 |
+
|
| 158 |
+
# 5. Calculate Overall Severity
|
| 159 |
+
total_segments = len(results) if len(results) > 0 else 1
|
| 160 |
+
severity_score = (stutter_count / total_segments) * 100
|
| 161 |
+
|
| 162 |
+
severity_label = "Normal"
|
| 163 |
+
if severity_score > 10: severity_label = "Mild"
|
| 164 |
+
if severity_score > 30: severity_label = "Moderate"
|
| 165 |
+
if severity_score > 60: severity_label = "Severe"
|
| 166 |
+
|
| 167 |
+
return {
|
| 168 |
+
"overall_severity": severity_label,
|
| 169 |
+
"stutter_percentage": round(severity_score, 2),
|
| 170 |
+
"details": results
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
# ======================================================
|
| 174 |
+
# 4. APP LOGIC
|
| 175 |
+
# ======================================================
|
| 176 |
+
|
| 177 |
+
# Initialize Service Global
|
| 178 |
+
detector_service = StutterInferenceService(MODEL_PATH)
|
| 179 |
|
| 180 |
def allowed_file(filename):
|
| 181 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
@app.route('/health', methods=['GET'])
|
| 184 |
def health_check():
|
| 185 |
+
return jsonify({
|
| 186 |
+
'status': 'healthy',
|
| 187 |
+
'model_loaded': detector_service.loaded
|
| 188 |
+
}), 200
|
| 189 |
|
| 190 |
@app.route('/upload', methods=['POST'])
|
| 191 |
def upload_file():
|
| 192 |
+
if not detector_service.loaded:
|
| 193 |
+
return jsonify({'error': 'Model failed to load on server start.'}), 500
|
|
|
|
|
|
|
| 194 |
|
| 195 |
if 'audio' not in request.files:
|
| 196 |
return jsonify({'error': 'No audio file provided'}), 400
|
|
|
|
| 202 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 203 |
file.save(filepath)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
try:
|
| 206 |
+
# Run analysis using the new service
|
| 207 |
+
results = detector_service.analyze(filepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
# Cleanup
|
| 210 |
if os.path.exists(filepath): os.remove(filepath)
|
|
|
|
| 212 |
return jsonify(results), 200
|
| 213 |
|
| 214 |
except Exception as e:
|
| 215 |
+
print(f"Error processing file: {e}")
|
| 216 |
if os.path.exists(filepath): os.remove(filepath)
|
| 217 |
return jsonify({'error': str(e)}), 500
|
| 218 |
|
| 219 |
+
return jsonify({'error': 'Invalid file type'}), 400
|
| 220 |
|
| 221 |
if __name__ == '__main__':
|
|
|
|
| 222 |
app.run(host='0.0.0.0', port=7860)
|
models/stutter_detector_all_types.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da5f2977f33bfac1112d588e3e5e187f0e600af13190eb9fb9bc0b3411eb6ada
|
| 3 |
+
size 380482371
|
requirements.txt
CHANGED
|
@@ -8,4 +8,4 @@ librosa
|
|
| 8 |
soundfile
|
| 9 |
numpy
|
| 10 |
scipy
|
| 11 |
-
gunicorn
|
|
|
|
| 8 |
soundfile
|
| 9 |
numpy
|
| 10 |
scipy
|
| 11 |
+
gunicorn
|