import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load your model and tokenizer model_name = "akhmat-s/t5-base-grammar-corrector" # or "akhmat-s/t5-large-quant-grammar-corrector" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def correct_grammar(text): inputs = tokenizer.encode("fix: " + text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected_text iface = gr.Interface( fn=correct_grammar, inputs=gr.Textbox(lines=5, label="Input Text"), outputs=gr.Textbox(label="Corrected Text"), title="Grammar Correction Chat", description="Enter text with grammatical errors, and the model will provide corrections." ) if __name__ == "__main__": iface.launch()