Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load your model and tokenizer | |
model_name = "akhmat-s/t5-base-grammar-corrector" # or "akhmat-s/t5-large-quant-grammar-corrector" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def correct_grammar(text): | |
inputs = tokenizer.encode("fix: " + text, return_tensors="pt", max_length=512, truncation=True) | |
outputs = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True) | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return corrected_text | |
iface = gr.Interface( | |
fn=correct_grammar, | |
inputs=gr.Textbox(lines=5, label="Input Text"), | |
outputs=gr.Textbox(label="Corrected Text"), | |
title="Grammar Correction Chat", | |
description="Enter text with grammatical errors, and the model will provide corrections." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |