Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import ast
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
+
import random
|
| 9 |
+
import asyncio
|
| 10 |
+
import os
|
| 11 |
+
os.environ["STREAMLIT_WATCHDOG"] = "0"
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
asyncio.get_running_loop()
|
| 15 |
+
except RuntimeError:
|
| 16 |
+
asyncio.set_event_loop(asyncio.new_event_loop())
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Load pre-trained model
|
| 20 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 21 |
+
|
| 22 |
+
def get_embedding(text):
|
| 23 |
+
return model.encode(text, convert_to_numpy=True)
|
| 24 |
+
|
| 25 |
+
# Load datasets
|
| 26 |
+
tweets_df = pd.read_csv("dataset_with_embeddings.csv") # Contains 'tweet_id' and 'sentence_embedding'
|
| 27 |
+
original_tweets_df = pd.read_csv("dataset_with_actual_text.csv") # Contains 'tweet_id' and 'original_text'
|
| 28 |
+
|
| 29 |
+
# Convert embeddings from string to list
|
| 30 |
+
|
| 31 |
+
def parse_embedding(embedding_str):
|
| 32 |
+
try:
|
| 33 |
+
return ast.literal_eval(embedding_str)
|
| 34 |
+
except (ValueError, SyntaxError):
|
| 35 |
+
return None # Handle errors gracefully
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
tweets_df['sentence_embedding'] = tweets_df['sentence_embedding'].astype(str).apply(parse_embedding)
|
| 39 |
+
|
| 40 |
+
# Simulated user database
|
| 41 |
+
users = {"testuser": "password123"} # Dictionary to store usernames and passwords
|
| 42 |
+
|
| 43 |
+
# Session state for login
|
| 44 |
+
if "logged_in" not in st.session_state:
|
| 45 |
+
st.session_state["logged_in"] = False
|
| 46 |
+
st.session_state["username"] = ""
|
| 47 |
+
st.session_state["liked_tweets"] = []
|
| 48 |
+
st.session_state["posted_tweets"] = []
|
| 49 |
+
|
| 50 |
+
# Login Page
|
| 51 |
+
if not st.session_state["logged_in"]:
|
| 52 |
+
st.title("Tweet Recommendation System")
|
| 53 |
+
username = st.text_input("Username")
|
| 54 |
+
password = st.text_input("Password", type="password")
|
| 55 |
+
if st.button("Login"):
|
| 56 |
+
if username in users and users[username] == password:
|
| 57 |
+
st.session_state["logged_in"] = True
|
| 58 |
+
st.session_state["username"] = username
|
| 59 |
+
st.success("Login successful!")
|
| 60 |
+
st.experimental_rerun()
|
| 61 |
+
else:
|
| 62 |
+
st.error("Invalid credentials")
|
| 63 |
+
else:
|
| 64 |
+
st.title(f"Welcome, {st.session_state['username']}!")
|
| 65 |
+
|
| 66 |
+
# Randomly select 10 tweets for the Explore Page
|
| 67 |
+
random_tweets = original_tweets_df.sample(10)
|
| 68 |
+
|
| 69 |
+
st.subheader("Explore Tweets")
|
| 70 |
+
for _, row in random_tweets.iterrows():
|
| 71 |
+
tweet_id = row['tweet_id']
|
| 72 |
+
text = row['original_text']
|
| 73 |
+
|
| 74 |
+
with st.container():
|
| 75 |
+
st.write(f"*Tweet:* {text}")
|
| 76 |
+
if st.button(f"Like β€ {tweet_id}", key=f"like_{tweet_id}"):
|
| 77 |
+
if tweet_id not in st.session_state["liked_tweets"]:
|
| 78 |
+
st.session_state["liked_tweets"].append(tweet_id)
|
| 79 |
+
st.success("Tweet Liked!")
|
| 80 |
+
|
| 81 |
+
# Posting new tweets
|
| 82 |
+
st.subheader("Post a Tweet")
|
| 83 |
+
new_tweet = st.text_area("Write your tweet here:")
|
| 84 |
+
if st.button("Post Tweet"):
|
| 85 |
+
if new_tweet:
|
| 86 |
+
new_tweet_embedding = get_embedding(new_tweet)
|
| 87 |
+
st.session_state["posted_tweets"].append(new_tweet_embedding)
|
| 88 |
+
st.success("Tweet posted successfully!")
|
| 89 |
+
|
| 90 |
+
# Recommendation Logic
|
| 91 |
+
if st.session_state["liked_tweets"] or st.session_state["posted_tweets"]:
|
| 92 |
+
st.subheader("Recommended Tweets for You")
|
| 93 |
+
|
| 94 |
+
# Get embeddings of liked tweets
|
| 95 |
+
liked_embeddings = [tweets_df[tweets_df['tweet_id'] == tid]['sentence_embedding'].values[0]
|
| 96 |
+
for tid in st.session_state["liked_tweets"]]
|
| 97 |
+
|
| 98 |
+
# Get embeddings of posted tweets
|
| 99 |
+
posted_embeddings = st.session_state["posted_tweets"]
|
| 100 |
+
|
| 101 |
+
# Combine all embeddings
|
| 102 |
+
user_profile_embedding = np.mean(liked_embeddings + posted_embeddings, axis=0)
|
| 103 |
+
|
| 104 |
+
# Compute cosine similarity
|
| 105 |
+
all_embeddings = np.vstack(tweets_df['sentence_embedding'].values)
|
| 106 |
+
similarities = cosine_similarity([user_profile_embedding], all_embeddings)[0]
|
| 107 |
+
|
| 108 |
+
# Get top 10 similar tweets
|
| 109 |
+
top_indices = np.argsort(similarities)[-10:][::-1]
|
| 110 |
+
recommended_tweets = tweets_df.iloc[top_indices]
|
| 111 |
+
|
| 112 |
+
# Display recommended tweets
|
| 113 |
+
for _, row in recommended_tweets.iterrows():
|
| 114 |
+
tweet_id = row['tweet_id']
|
| 115 |
+
text = original_tweets_df[original_tweets_df['tweet_id'] == tweet_id]['original_text'].values[0]
|
| 116 |
+
with st.container():
|
| 117 |
+
st.write(f"*Recommended Tweet:* {text}")
|