|
|
|
import gradio as gr |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
|
|
model_name = "Helsinki-NLP/opus-mt-en-ur" |
|
tokenizer = MarianTokenizer.from_pretrained(model_name) |
|
model = MarianMTModel.from_pretrained(model_name) |
|
|
|
|
|
def translate(text): |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
translated = model.generate(**inputs) |
|
output = tokenizer.decode(translated[0], skip_special_tokens=True) |
|
return output |
|
|
|
|
|
iface = gr.Interface( |
|
fn=translate, |
|
inputs=gr.Textbox(lines=1, placeholder="Enter your (English) text here..."), |
|
outputs=gr.Textbox(label="Translation (Urdu)"), |
|
title="English to Urdu Translator", |
|
description="Enter text in English and get the Urdu translation instantly." |
|
) |
|
|
|
|
|
iface.launch() |
|
|