import streamlit as st import logging import os from io import BytesIO import pdfplumber from langchain.text_splitter import CharacterTextSplitter from langchain_community.vectorstores import FAISS from sentence_transformers import SentenceTransformer from transformers import pipeline import re # Setup logging for Spaces logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Lazy load models @st.cache_resource(ttl=1800) def load_embeddings_model(): logger.info("Loading embeddings model") try: return SentenceTransformer("all-MiniLM-L12-v2") except Exception as e: logger.error(f"Embeddings load error: {str(e)}") st.error(f"Embedding model error: {str(e)}") return None @st.cache_resource(ttl=1800) def load_qa_pipeline(): logger.info("Loading QA pipeline") try: return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300) except Exception as e: logger.error(f"QA model load error: {str(e)}") st.error(f"QA model error: {str(e)}") return None @st.cache_resource(ttl=1800) def load_summary_pipeline(): logger.info("Loading summary pipeline") try: return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150) except Exception as e: logger.error(f"Summary model load error: {str(e)}") st.error(f"Summary model error: {str(e)}") return None # Process PDF with enhanced extraction def process_pdf(uploaded_file): logger.info("Processing PDF with enhanced extraction") try: text = "" code_blocks = [] with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf: for page in pdf.pages[:20]: extracted = page.extract_text(layout=False) if extracted: text += extracted + "\n" for char in page.chars: if 'fontname' in char and 'mono' in char['fontname'].lower(): code_blocks.append(char['text']) code_text = page.extract_text() code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE) for match in code_matches: code_blocks.append(match.group().strip()) tables = page.extract_tables() if tables: for table in tables: text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n" for obj in page.extract_words(): if obj.get('size', 0) > 12: text += f"\n{obj['text']}\n" code_text = "\n".join(code_blocks).strip() if not text: raise ValueError("No text extracted from PDF") text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=100, keep_separator=True) text_chunks = text_splitter.split_text(text)[:50] code_chunks = text_splitter.split_text(code_text)[:25] if code_text else [] embeddings_model = load_embeddings_model() if not embeddings_model: return None, None, text, code_text text_vector_store = FAISS.from_embeddings( zip(text_chunks, [embeddings_model.encode(chunk) for chunk in text_chunks]), embeddings_model.encode ) if text_chunks else None code_vector_store = FAISS.from_embeddings( zip(code_chunks, [embeddings_model.encode(chunk) for chunk in code_chunks]), embeddings_model.encode ) if code_chunks else None logger.info("PDF processed successfully with enhanced extraction") return text_vector_store, code_vector_store, text, code_text except Exception as e: logger.error(f"PDF processing error: {str(e)}") st.error(f"PDF error: {str(e)}") return None, None, "", "" # Summarize PDF def summarize_pdf(text): logger.info("Generating summary") try: summary_pipeline = load_summary_pipeline() if not summary_pipeline: return "Summary model unavailable." text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=50) chunks = text_splitter.split_text(text)[:2] summaries = [] for chunk in chunks: summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text'] summaries.append(summary.strip()) combined_summary = " ".join(summaries) if len(combined_summary.split()) > 150: combined_summary = " ".join(combined_summary.split()[:150]) logger.info("Summary generated") return f"Sure, here's a concise summary of the PDF:\n{combined_summary}" except Exception as e: logger.error(f"Summary error: {str(e)}") return f"Oops, something went wrong summarizing: {str(e)}" # Answer question with improved response def answer_question(text_vector_store, code_vector_store, query): logger.info(f"Processing query: {query}") try: if not text_vector_store and not code_vector_store: return "Please upload a PDF first!" qa_pipeline = load_qa_pipeline() if not qa_pipeline: return "Sorry, the QA model is unavailable right now." is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"]) if is_code_query and code_vector_store: return f"Here's the code from the PDF:\n```python\n{st.session_state.code_text}\n```" vector_store = text_vector_store if not vector_store: return "No relevant content found for your query." docs = vector_store.similarity_search(query, k=5) # Increased to 5 for more context context = "\n".join(doc.page_content for doc in docs) prompt = f"Context: {context}\nQuestion: {query}\nProvide a detailed, accurate answer based on the context, prioritizing relevant information. Respond as a helpful assistant:" response = qa_pipeline(prompt)[0]['generated_text'] logger.info("Answer generated") return f"Got it! Here's a detailed answer:\n{response.strip()}" except Exception as e: logger.error(f"Query error: {str(e)}") return f"Sorry, something went wrong: {str(e)}" # Streamlit UI try: st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide") st.markdown(""" """, unsafe_allow_html=True) st.markdown('