Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,12 @@ from langchain_community.vectorstores import FAISS
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import pipeline
|
10 |
import re
|
11 |
-
from collections import defaultdict
|
12 |
|
13 |
-
# Setup logging for
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
-
# Lazy load models
|
18 |
@st.cache_resource(ttl=1800)
|
19 |
def load_embeddings_model():
|
20 |
logger.info("Loading embeddings model")
|
@@ -29,8 +28,7 @@ def load_embeddings_model():
|
|
29 |
def load_qa_pipeline():
|
30 |
logger.info("Loading QA pipeline")
|
31 |
try:
|
32 |
-
|
33 |
-
return pipeline("text2text-generation", model="google/flan-t5-base", max_length=256)
|
34 |
except Exception as e:
|
35 |
logger.error(f"QA model load error: {str(e)}")
|
36 |
st.error(f"QA model error: {str(e)}")
|
@@ -40,89 +38,67 @@ def load_qa_pipeline():
|
|
40 |
def load_summary_pipeline():
|
41 |
logger.info("Loading summary pipeline")
|
42 |
try:
|
43 |
-
return pipeline("summarization", model="sshleifer/distilbart-cnn-
|
44 |
except Exception as e:
|
45 |
logger.error(f"Summary model load error: {str(e)}")
|
46 |
st.error(f"Summary model error: {str(e)}")
|
47 |
return None
|
48 |
|
49 |
-
#
|
50 |
-
def extract_code_from_page(page):
|
51 |
-
mono_chars = [c for c in page.chars if 'fontname' in c and 'mono' in c['fontname'].lower()]
|
52 |
-
if not mono_chars:
|
53 |
-
return ""
|
54 |
-
|
55 |
-
# Group characters by y-coordinate (lines), rounded for precision
|
56 |
-
lines = defaultdict(list)
|
57 |
-
for c in mono_chars:
|
58 |
-
y_key = round(c['y1'], 2) # Use top coordinate
|
59 |
-
lines[y_key].append(c)
|
60 |
-
|
61 |
-
code_lines = []
|
62 |
-
# Sort lines top to bottom (PDF y decreases downward)
|
63 |
-
for y in sorted(lines.keys(), reverse=True):
|
64 |
-
line_chars = sorted(lines[y], key=lambda c: c['x0'])
|
65 |
-
line_text = ''
|
66 |
-
prev_x1 = None
|
67 |
-
# Calculate average char width for spacing detection
|
68 |
-
if line_chars:
|
69 |
-
avg_width = sum(c['width'] for c in line_chars) / len(line_chars)
|
70 |
-
else:
|
71 |
-
avg_width = 1
|
72 |
-
for c in line_chars:
|
73 |
-
if prev_x1 is not None:
|
74 |
-
gap = c['x0'] - prev_x1
|
75 |
-
if gap > avg_width * 0.3: # Threshold for adding spaces
|
76 |
-
spaces = int(gap / avg_width)
|
77 |
-
line_text += ' ' * spaces
|
78 |
-
line_text += c['text']
|
79 |
-
prev_x1 = c['x1']
|
80 |
-
code_lines.append(line_text.rstrip()) # Trim trailing spaces but keep leading for indentation
|
81 |
-
|
82 |
-
return '\n'.join(code_lines)
|
83 |
-
|
84 |
-
# Process PDF with improved extraction
|
85 |
def process_pdf(uploaded_file):
|
86 |
-
logger.info("Processing PDF")
|
87 |
try:
|
88 |
-
|
89 |
-
|
90 |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
91 |
-
for page in pdf.pages[:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
embeddings_model = load_embeddings_model()
|
111 |
if not embeddings_model:
|
112 |
-
return None, None,
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
except Exception as e:
|
121 |
logger.error(f"PDF processing error: {str(e)}")
|
122 |
st.error(f"PDF error: {str(e)}")
|
123 |
return None, None, "", ""
|
124 |
|
125 |
-
#
|
126 |
def summarize_pdf(text):
|
127 |
logger.info("Generating summary")
|
128 |
try:
|
@@ -130,116 +106,76 @@ def summarize_pdf(text):
|
|
130 |
if not summary_pipeline:
|
131 |
return "Summary model unavailable."
|
132 |
|
133 |
-
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=
|
134 |
-
chunks = text_splitter.split_text(text)[:
|
135 |
-
summaries = [
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
|
|
|
|
|
|
|
141 |
logger.info("Summary generated")
|
142 |
-
return f"Sure, here's a concise summary of the PDF:\n
|
143 |
except Exception as e:
|
144 |
logger.error(f"Summary error: {str(e)}")
|
145 |
return f"Oops, something went wrong summarizing: {str(e)}"
|
146 |
|
147 |
-
#
|
148 |
def answer_question(text_vector_store, code_vector_store, query):
|
149 |
logger.info(f"Processing query: {query}")
|
150 |
try:
|
151 |
if not text_vector_store and not code_vector_store:
|
152 |
-
return "Please upload
|
153 |
|
154 |
qa_pipeline = load_qa_pipeline()
|
155 |
if not qa_pipeline:
|
156 |
return "Sorry, the QA model is unavailable right now."
|
157 |
|
158 |
-
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"
|
|
|
|
|
159 |
|
160 |
-
vector_store =
|
161 |
if not vector_store:
|
162 |
return "No relevant content found for your query."
|
163 |
|
164 |
-
docs = vector_store.similarity_search(query, k=
|
165 |
-
context = "\n
|
166 |
-
prompt = f"
|
167 |
-
response = qa_pipeline(prompt)[0]['generated_text']
|
168 |
-
|
169 |
-
if is_code_query:
|
170 |
-
response = f"Here's the relevant code extracted from the PDF:\n```python
|
171 |
-
|
172 |
logger.info("Answer generated")
|
173 |
-
return f"Got it! Here's
|
174 |
except Exception as e:
|
175 |
logger.error(f"Query error: {str(e)}")
|
176 |
return f"Sorry, something went wrong: {str(e)}"
|
177 |
|
178 |
-
# Streamlit UI
|
179 |
try:
|
180 |
-
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide"
|
181 |
-
|
182 |
-
# Enhanced CSS for modern, dark-theme friendly design (matching the screenshot's dark mode)
|
183 |
st.markdown("""
|
184 |
<style>
|
185 |
-
|
186 |
-
.
|
187 |
-
.
|
188 |
-
.
|
189 |
-
.
|
190 |
-
.
|
191 |
-
.
|
192 |
-
.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
.
|
197 |
-
.stChatMessage.assistant { background-color: #2a2a2a; color: #ffffff; }
|
198 |
-
|
199 |
-
/* Code blocks */
|
200 |
-
pre { background-color: #252525; color: #d4d4d4; padding: 12px; border-radius: 6px; overflow: auto; font-family: 'Consolas', 'Monaco', monospace; }
|
201 |
-
|
202 |
-
/* Title and markdown */
|
203 |
-
h1 { color: #ffffff; }
|
204 |
-
.stMarkdown { color: #d4d4d4; }
|
205 |
</style>
|
206 |
""", unsafe_allow_html=True)
|
207 |
|
208 |
-
|
209 |
-
with
|
210 |
-
st.title("📄 PDF Controls")
|
211 |
-
st.markdown("Upload your PDF (up to 200MB) and process it.")
|
212 |
-
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"], help="Drag and drop or browse to upload.")
|
213 |
-
|
214 |
-
if uploaded_file:
|
215 |
-
if st.button("Process PDF", key="process_btn"):
|
216 |
-
with st.spinner("Processing PDF... This may take a moment."):
|
217 |
-
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
218 |
-
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
219 |
-
st.success("PDF processed successfully! You can now ask questions or summarize.")
|
220 |
-
st.session_state.messages = []
|
221 |
-
else:
|
222 |
-
st.error("Failed to process PDF. Please try another file.")
|
223 |
-
|
224 |
-
if "pdf_text" in st.session_state and st.session_state.pdf_text:
|
225 |
-
if st.button("Summarize PDF", key="summarize_btn"):
|
226 |
-
with st.spinner("Generating summary..."):
|
227 |
-
summary = summarize_pdf(st.session_state.pdf_text)
|
228 |
-
st.session_state.messages.append({"role": "assistant", "content": summary})
|
229 |
-
|
230 |
-
st.markdown("---")
|
231 |
-
if st.session_state.get("messages"):
|
232 |
-
chat_text = "\n\n".join(f"**{m['role'].capitalize()}:** {m['content']}" for m in st.session_state.messages)
|
233 |
-
st.download_button("Download Chat History", chat_text, "chat_history.txt", use_container_width=True)
|
234 |
-
|
235 |
-
# Main content
|
236 |
-
st.title("Smart PDF Q&A")
|
237 |
-
st.markdown("""
|
238 |
-
Upload a PDF using the sidebar to ask questions, get summaries (~180 words), or extract code.
|
239 |
-
For code, try queries like "give me code for [topic]". Responses are designed to be quick, accurate, and user-friendly!
|
240 |
-
""")
|
241 |
|
242 |
-
#
|
243 |
if "messages" not in st.session_state:
|
244 |
st.session_state.messages = []
|
245 |
if "text_vector_store" not in st.session_state:
|
@@ -251,26 +187,57 @@ try:
|
|
251 |
if "code_text" not in st.session_state:
|
252 |
st.session_state.code_text = ""
|
253 |
|
254 |
-
#
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
|
|
|
|
261 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
262 |
-
prompt = st.chat_input("Ask a question (e.g., '
|
263 |
if prompt:
|
264 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
265 |
-
with
|
266 |
st.markdown(prompt)
|
267 |
-
with
|
268 |
-
with st.spinner("
|
269 |
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
270 |
st.markdown(answer, unsafe_allow_html=True)
|
271 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
except Exception as e:
|
275 |
logger.error(f"App initialization failed: {str(e)}")
|
276 |
-
st.error(f"App failed to start: {str(e)}.
|
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import pipeline
|
10 |
import re
|
|
|
11 |
|
12 |
+
# Setup logging for Spaces
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Lazy load models
|
17 |
@st.cache_resource(ttl=1800)
|
18 |
def load_embeddings_model():
|
19 |
logger.info("Loading embeddings model")
|
|
|
28 |
def load_qa_pipeline():
|
29 |
logger.info("Loading QA pipeline")
|
30 |
try:
|
31 |
+
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
|
|
32 |
except Exception as e:
|
33 |
logger.error(f"QA model load error: {str(e)}")
|
34 |
st.error(f"QA model error: {str(e)}")
|
|
|
38 |
def load_summary_pipeline():
|
39 |
logger.info("Loading summary pipeline")
|
40 |
try:
|
41 |
+
return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150)
|
42 |
except Exception as e:
|
43 |
logger.error(f"Summary model load error: {str(e)}")
|
44 |
st.error(f"Summary model error: {str(e)}")
|
45 |
return None
|
46 |
|
47 |
+
# Process PDF with enhanced extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def process_pdf(uploaded_file):
|
49 |
+
logger.info("Processing PDF with enhanced extraction")
|
50 |
try:
|
51 |
+
text = ""
|
52 |
+
code_blocks = []
|
53 |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
54 |
+
for page in pdf.pages[:20]:
|
55 |
+
extracted = page.extract_text(layout=False)
|
56 |
+
if extracted:
|
57 |
+
text += extracted + "\n"
|
58 |
+
for char in page.chars:
|
59 |
+
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
60 |
+
code_blocks.append(char['text'])
|
61 |
+
code_text = page.extract_text()
|
62 |
+
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE)
|
63 |
+
for match in code_matches:
|
64 |
+
code_blocks.append(match.group().strip())
|
65 |
+
tables = page.extract_tables()
|
66 |
+
if tables:
|
67 |
+
for table in tables:
|
68 |
+
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
69 |
+
for obj in page.extract_words():
|
70 |
+
if obj.get('size', 0) > 12:
|
71 |
+
text += f"\n{obj['text']}\n"
|
72 |
+
|
73 |
+
code_text = "\n".join(code_blocks).strip()
|
74 |
+
if not text:
|
75 |
+
raise ValueError("No text extracted from PDF")
|
76 |
+
|
77 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=100, keep_separator=True)
|
78 |
+
text_chunks = text_splitter.split_text(text)[:50]
|
79 |
+
code_chunks = text_splitter.split_text(code_text)[:25] if code_text else []
|
80 |
|
81 |
embeddings_model = load_embeddings_model()
|
82 |
if not embeddings_model:
|
83 |
+
return None, None, text, code_text
|
84 |
+
|
85 |
+
text_vector_store = FAISS.from_embeddings(
|
86 |
+
zip(text_chunks, [embeddings_model.encode(chunk) for chunk in text_chunks]),
|
87 |
+
embeddings_model.encode
|
88 |
+
) if text_chunks else None
|
89 |
+
code_vector_store = FAISS.from_embeddings(
|
90 |
+
zip(code_chunks, [embeddings_model.encode(chunk) for chunk in code_chunks]),
|
91 |
+
embeddings_model.encode
|
92 |
+
) if code_chunks else None
|
93 |
+
|
94 |
+
logger.info("PDF processed successfully with enhanced extraction")
|
95 |
+
return text_vector_store, code_vector_store, text, code_text
|
96 |
except Exception as e:
|
97 |
logger.error(f"PDF processing error: {str(e)}")
|
98 |
st.error(f"PDF error: {str(e)}")
|
99 |
return None, None, "", ""
|
100 |
|
101 |
+
# Summarize PDF
|
102 |
def summarize_pdf(text):
|
103 |
logger.info("Generating summary")
|
104 |
try:
|
|
|
106 |
if not summary_pipeline:
|
107 |
return "Summary model unavailable."
|
108 |
|
109 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=50)
|
110 |
+
chunks = text_splitter.split_text(text)[:2]
|
111 |
+
summaries = []
|
112 |
|
113 |
+
for chunk in chunks:
|
114 |
+
summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
115 |
+
summaries.append(summary.strip())
|
116 |
|
117 |
+
combined_summary = " ".join(summaries)
|
118 |
+
if len(combined_summary.split()) > 150:
|
119 |
+
combined_summary = " ".join(combined_summary.split()[:150])
|
120 |
logger.info("Summary generated")
|
121 |
+
return f"Sure, here's a concise summary of the PDF:\n{combined_summary}"
|
122 |
except Exception as e:
|
123 |
logger.error(f"Summary error: {str(e)}")
|
124 |
return f"Oops, something went wrong summarizing: {str(e)}"
|
125 |
|
126 |
+
# Answer question with improved response
|
127 |
def answer_question(text_vector_store, code_vector_store, query):
|
128 |
logger.info(f"Processing query: {query}")
|
129 |
try:
|
130 |
if not text_vector_store and not code_vector_store:
|
131 |
+
return "Please upload a PDF first!"
|
132 |
|
133 |
qa_pipeline = load_qa_pipeline()
|
134 |
if not qa_pipeline:
|
135 |
return "Sorry, the QA model is unavailable right now."
|
136 |
|
137 |
+
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
|
138 |
+
if is_code_query and code_vector_store:
|
139 |
+
return f"Here's the code from the PDF:\n```python\n{st.session_state.code_text}\n```"
|
140 |
|
141 |
+
vector_store = text_vector_store
|
142 |
if not vector_store:
|
143 |
return "No relevant content found for your query."
|
144 |
|
145 |
+
docs = vector_store.similarity_search(query, k=5) # Increased to 5 for more context
|
146 |
+
context = "\n".join(doc.page_content for doc in docs)
|
147 |
+
prompt = f"Context: {context}\nQuestion: {query}\nProvide a detailed, accurate answer based on the context, prioritizing relevant information. Respond as a helpful assistant:"
|
148 |
+
response = qa_pipeline(prompt)[0]['generated_text']
|
|
|
|
|
|
|
|
|
149 |
logger.info("Answer generated")
|
150 |
+
return f"Got it! Here's a detailed answer:\n{response.strip()}"
|
151 |
except Exception as e:
|
152 |
logger.error(f"Query error: {str(e)}")
|
153 |
return f"Sorry, something went wrong: {str(e)}"
|
154 |
|
155 |
+
# Streamlit UI
|
156 |
try:
|
157 |
+
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
|
|
|
|
|
158 |
st.markdown("""
|
159 |
<style>
|
160 |
+
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
|
161 |
+
.sidebar { background-color: #f8f9fa; padding: 10px; border-radius: 5px; }
|
162 |
+
.chat-container { border: 1px solid #ddd; border-radius: 10px; padding: 10px; height: 60vh; overflow-y: auto; margin-top: 20px; }
|
163 |
+
.stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; max-width: 70%; }
|
164 |
+
.user { background-color: #e6f3ff; align-self: flex-end; }
|
165 |
+
.assistant { background-color: #f0f0f0; }
|
166 |
+
.dark .user { background-color: #2a2a72; color: #fff; }
|
167 |
+
.dark .assistant { background-color: #2e2e2e; color: #fff; }
|
168 |
+
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 8px 16px; border-radius: 5px; }
|
169 |
+
.stButton>button:hover { background-color: #45a049; }
|
170 |
+
pre { background-color: #f8f8f8; padding: 10px; border-radius: 5px; overflow-x: auto; }
|
171 |
+
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 10px; border-radius: 5px; text-align: center; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
</style>
|
173 |
""", unsafe_allow_html=True)
|
174 |
|
175 |
+
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
176 |
+
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
# Initialize session state
|
179 |
if "messages" not in st.session_state:
|
180 |
st.session_state.messages = []
|
181 |
if "text_vector_store" not in st.session_state:
|
|
|
187 |
if "code_text" not in st.session_state:
|
188 |
st.session_state.code_text = ""
|
189 |
|
190 |
+
# Sidebar with toggle
|
191 |
+
with st.sidebar:
|
192 |
+
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
|
193 |
+
theme = st.radio("Theme", ["Light", "Dark"], index=0)
|
194 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
195 |
+
|
196 |
+
# PDF upload and processing
|
197 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
198 |
+
col1, col2 = st.columns([1, 1])
|
199 |
+
with col1:
|
200 |
+
if st.button("Process PDF"):
|
201 |
+
with st.spinner("Processing PDF..."):
|
202 |
+
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
203 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
204 |
+
st.success("PDF processed! Ask away or summarize.")
|
205 |
+
st.session_state.messages = []
|
206 |
+
else:
|
207 |
+
st.error("Failed to process PDF.")
|
208 |
+
with col2:
|
209 |
+
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
210 |
+
with st.spinner("Summarizing..."):
|
211 |
+
summary = summarize_pdf(st.session_state.pdf_text)
|
212 |
+
st.session_state.messages.append({"role": "assistant", "content": summary})
|
213 |
+
st.markdown(summary, unsafe_allow_html=True)
|
214 |
|
215 |
+
# Chat interface
|
216 |
+
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
|
217 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
218 |
+
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):")
|
219 |
if prompt:
|
220 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
221 |
+
with st.chat_message("user"):
|
222 |
st.markdown(prompt)
|
223 |
+
with st.chat_message("assistant"):
|
224 |
+
with st.spinner('<div class="spinner">⏳</div>'):
|
225 |
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
226 |
st.markdown(answer, unsafe_allow_html=True)
|
227 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
228 |
+
|
229 |
+
# Display chat history
|
230 |
+
for message in st.session_state.messages:
|
231 |
+
with st.chat_message(message["role"]):
|
232 |
+
st.markdown(message["content"], unsafe_allow_html=True)
|
233 |
+
|
234 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
235 |
+
|
236 |
+
# Download chat history
|
237 |
+
if st.session_state.messages:
|
238 |
+
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
|
239 |
+
st.download_button("Download Chat History", chat_text, "chat_history.txt")
|
240 |
|
241 |
except Exception as e:
|
242 |
logger.error(f"App initialization failed: {str(e)}")
|
243 |
+
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")
|