Smart_PDF_QA / app.py
aaporosh's picture
Update app.py
ce4cfdb verified
raw
history blame
7.5 kB
import streamlit as st
import logging
import os
from io import BytesIO
import pdfplumber
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
from transformers import pipeline
# Setup logging for Spaces
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Lazy load models
@st.cache_resource(ttl=3600)
def load_embeddings_model():
logger.info("Loading embeddings model")
try:
return SentenceTransformer("all-MiniLM-L6-v2")
except Exception as e:
logger.error(f"Embeddings load error: {str(e)}")
st.error(f"Embedding model error: {str(e)}")
return None
@st.cache_resource(ttl=3600)
def load_qa_pipeline():
logger.info("Loading QA pipeline")
try:
return pipeline("text2text-generation", model="google/flan-t5-base", max_length=300)
except Exception as e:
logger.error(f"QA model load error: {str(e)}")
st.error(f"QA model error: {str(e)}")
return None
# Process PDF
def process_pdf(uploaded_file):
logger.info("Processing PDF")
try:
text = ""
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
for page in pdf.pages:
extracted = page.extract_text()
if extracted:
text += extracted + "\n"
if not text:
# Optional OCR (uncomment if needed, requires pdf2image, pytesseract)
# from pdf2image import convert_from_bytes
# import pytesseract
# images = convert_from_bytes(uploaded_file.getvalue())
# text = "".join(pytesseract.image_to_string(img) for img in images)
if not text:
raise ValueError("No text extracted from PDF")
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=150)
chunks = text_splitter.split_text(text)
embeddings_model = load_embeddings_model()
if not embeddings_model:
return None, text
embeddings = [embeddings_model.encode(chunk) for chunk in chunks]
vector_store = FAISS.from_embeddings(zip(chunks, embeddings), embeddings_model.encode)
logger.info("PDF processed successfully")
return vector_store, text
except Exception as e:
logger.error(f"PDF processing error: {str(e)}")
st.error(f"PDF error: {str(e)}")
return None, ""
# Summarize PDF
def summarize_pdf(text):
logger.info("Generating summary")
try:
qa_pipeline = load_qa_pipeline()
if not qa_pipeline:
return "Summary model unavailable."
# Split text for summarization if too long
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_text(text)
summaries = []
for chunk in chunks[:3]: # Limit to first 3 chunks for brevity
prompt = f"Summarize this text in 60-80 words, highlighting key points:\n{chunk}"
summary = qa_pipeline(prompt, max_length=100)[0]['generated_text']
summaries.append(summary.strip())
combined_summary = " ".join(summaries)
if len(combined_summary.split()) > 200:
combined_summary = " ".join(combined_summary.split()[:200])
logger.info("Summary generated")
return combined_summary
except Exception as e:
logger.error(f"Summary error: {str(e)}")
return f"Error summarizing: {str(e)}"
# Answer question
def answer_question(vector_store, query):
logger.info(f"Processing query: {query}")
try:
if not vector_store:
return "Please upload a PDF first."
qa_pipeline = load_qa_pipeline()
if not qa_pipeline:
return "QA model unavailable."
docs = vector_store.similarity_search(query, k=3)
context = "\n".join(doc.page_content for doc in docs)
prompt = f"Context: {context}\nQuestion: {query}\nAnswer concisely:"
response = qa_pipeline(prompt)[0]['generated_text']
logger.info("Answer generated")
return response.strip()
except Exception as e:
logger.error(f"Query error: {str(e)}")
return f"Error answering: {str(e)}"
# Streamlit UI
try:
st.set_page_config(page_title="Smart PDF Q&A", page_icon="πŸ“„")
st.title("Smart PDF Q&A")
st.markdown("""
Upload a PDF to ask questions or get a summary (up to 200 words). Chat history is preserved.
<style>
.stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; }
.stChatMessage.user { background-color: #e6f3ff; }
.stChatMessage.assistant { background-color: #f0f0f0; }
</style>
""", unsafe_allow_html=True)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "pdf_text" not in st.session_state:
st.session_state.pdf_text = ""
# PDF upload
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
if uploaded_file:
col1, col2 = st.columns([1, 1])
with col1:
if st.button("Process PDF"):
with st.spinner("Processing PDF..."):
st.session_state.vector_store, st.session_state.pdf_text = process_pdf(uploaded_file)
if st.session_state.vector_store:
st.success("PDF processed! Ask questions or summarize.")
st.session_state.messages = []
else:
st.error("Failed to process PDF.")
with col2:
if st.button("Summarize PDF") and st.session_state.pdf_text:
with st.spinner("Generating summary..."):
summary = summarize_pdf(st.session_state.pdf_text)
st.session_state.messages.append({"role": "assistant", "content": f"**Summary**: {summary}"})
st.markdown(f"**Summary**: {summary}")
# Chat interface
if st.session_state.vector_store:
prompt = st.chat_input("Ask a question about the PDF:")
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Generating answer..."):
answer = answer_question(st.session_state.vector_store, prompt)
st.markdown(answer)
st.session_state.messages.append({"role": "assistant", "content": answer})
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Download chat history
if st.session_state.messages:
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
st.download_button("Download Chat History", chat_text, "chat_history.txt")
except Exception as e:
logger.error(f"App initialization failed: {str(e)}")
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")