Spaces:
Sleeping
Sleeping
import streamlit as st | |
import logging | |
import os | |
from io import BytesIO | |
import pdfplumber | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from sentence_transformers import SentenceTransformer | |
from transformers import pipeline | |
# Setup logging for Spaces | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Lazy load models | |
def load_embeddings_model(): | |
logger.info("Loading embeddings model") | |
try: | |
return SentenceTransformer("all-MiniLM-L6-v2") | |
except Exception as e: | |
logger.error(f"Embeddings load error: {str(e)}") | |
st.error(f"Embedding model error: {str(e)}") | |
return None | |
def load_qa_pipeline(): | |
logger.info("Loading QA pipeline") | |
try: | |
return pipeline("text2text-generation", model="google/flan-t5-base", max_length=300) | |
except Exception as e: | |
logger.error(f"QA model load error: {str(e)}") | |
st.error(f"QA model error: {str(e)}") | |
return None | |
# Process PDF | |
def process_pdf(uploaded_file): | |
logger.info("Processing PDF") | |
try: | |
text = "" | |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf: | |
for page in pdf.pages: | |
extracted = page.extract_text() | |
if extracted: | |
text += extracted + "\n" | |
if not text: | |
# Optional OCR (uncomment if needed, requires pdf2image, pytesseract) | |
# from pdf2image import convert_from_bytes | |
# import pytesseract | |
# images = convert_from_bytes(uploaded_file.getvalue()) | |
# text = "".join(pytesseract.image_to_string(img) for img in images) | |
if not text: | |
raise ValueError("No text extracted from PDF") | |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=150) | |
chunks = text_splitter.split_text(text) | |
embeddings_model = load_embeddings_model() | |
if not embeddings_model: | |
return None, text | |
embeddings = [embeddings_model.encode(chunk) for chunk in chunks] | |
vector_store = FAISS.from_embeddings(zip(chunks, embeddings), embeddings_model.encode) | |
logger.info("PDF processed successfully") | |
return vector_store, text | |
except Exception as e: | |
logger.error(f"PDF processing error: {str(e)}") | |
st.error(f"PDF error: {str(e)}") | |
return None, "" | |
# Summarize PDF | |
def summarize_pdf(text): | |
logger.info("Generating summary") | |
try: | |
qa_pipeline = load_qa_pipeline() | |
if not qa_pipeline: | |
return "Summary model unavailable." | |
# Split text for summarization if too long | |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100) | |
chunks = text_splitter.split_text(text) | |
summaries = [] | |
for chunk in chunks[:3]: # Limit to first 3 chunks for brevity | |
prompt = f"Summarize this text in 60-80 words, highlighting key points:\n{chunk}" | |
summary = qa_pipeline(prompt, max_length=100)[0]['generated_text'] | |
summaries.append(summary.strip()) | |
combined_summary = " ".join(summaries) | |
if len(combined_summary.split()) > 200: | |
combined_summary = " ".join(combined_summary.split()[:200]) | |
logger.info("Summary generated") | |
return combined_summary | |
except Exception as e: | |
logger.error(f"Summary error: {str(e)}") | |
return f"Error summarizing: {str(e)}" | |
# Answer question | |
def answer_question(vector_store, query): | |
logger.info(f"Processing query: {query}") | |
try: | |
if not vector_store: | |
return "Please upload a PDF first." | |
qa_pipeline = load_qa_pipeline() | |
if not qa_pipeline: | |
return "QA model unavailable." | |
docs = vector_store.similarity_search(query, k=3) | |
context = "\n".join(doc.page_content for doc in docs) | |
prompt = f"Context: {context}\nQuestion: {query}\nAnswer concisely:" | |
response = qa_pipeline(prompt)[0]['generated_text'] | |
logger.info("Answer generated") | |
return response.strip() | |
except Exception as e: | |
logger.error(f"Query error: {str(e)}") | |
return f"Error answering: {str(e)}" | |
# Streamlit UI | |
try: | |
st.set_page_config(page_title="Smart PDF Q&A", page_icon="π") | |
st.title("Smart PDF Q&A") | |
st.markdown(""" | |
Upload a PDF to ask questions or get a summary (up to 200 words). Chat history is preserved. | |
<style> | |
.stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; } | |
.stChatMessage.user { background-color: #e6f3ff; } | |
.stChatMessage.assistant { background-color: #f0f0f0; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
if "pdf_text" not in st.session_state: | |
st.session_state.pdf_text = "" | |
# PDF upload | |
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) | |
if uploaded_file: | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
if st.button("Process PDF"): | |
with st.spinner("Processing PDF..."): | |
st.session_state.vector_store, st.session_state.pdf_text = process_pdf(uploaded_file) | |
if st.session_state.vector_store: | |
st.success("PDF processed! Ask questions or summarize.") | |
st.session_state.messages = [] | |
else: | |
st.error("Failed to process PDF.") | |
with col2: | |
if st.button("Summarize PDF") and st.session_state.pdf_text: | |
with st.spinner("Generating summary..."): | |
summary = summarize_pdf(st.session_state.pdf_text) | |
st.session_state.messages.append({"role": "assistant", "content": f"**Summary**: {summary}"}) | |
st.markdown(f"**Summary**: {summary}") | |
# Chat interface | |
if st.session_state.vector_store: | |
prompt = st.chat_input("Ask a question about the PDF:") | |
if prompt: | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
with st.spinner("Generating answer..."): | |
answer = answer_question(st.session_state.vector_store, prompt) | |
st.markdown(answer) | |
st.session_state.messages.append({"role": "assistant", "content": answer}) | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Download chat history | |
if st.session_state.messages: | |
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages) | |
st.download_button("Download Chat History", chat_text, "chat_history.txt") | |
except Exception as e: | |
logger.error(f"App initialization failed: {str(e)}") | |
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.") |