Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,93 +1,157 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
import
|
|
|
|
|
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from langchain.chat_models import ChatOpenAI
|
| 8 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from transformers import pipeline
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Tabs for Chat, Summary, and Code
|
| 50 |
-
tabs = st.tabs(["💬 Chat with PDF", "📝 Summarize PDF", "💻 Extract Code"])
|
| 51 |
-
|
| 52 |
-
# -------------------- CHAT TAB --------------------
|
| 53 |
-
with tabs[0]:
|
| 54 |
-
st.subheader("Ask Questions About Your PDF")
|
| 55 |
-
if "chat_history" not in st.session_state:
|
| 56 |
-
st.session_state.chat_history = []
|
| 57 |
-
|
| 58 |
-
user_input = st.text_input("Enter your question:", key="chat_input")
|
| 59 |
-
if st.button("Send"):
|
| 60 |
-
result = qa_chain({"question": user_input, "chat_history": st.session_state.chat_history})
|
| 61 |
-
st.session_state.chat_history.append((user_input, result["answer"]))
|
| 62 |
-
|
| 63 |
-
for q, a in st.session_state.chat_history:
|
| 64 |
-
st.markdown(f"**You:** {q}")
|
| 65 |
-
st.markdown(f"**Bot:** {a}")
|
| 66 |
-
|
| 67 |
-
# -------------------- SUMMARY TAB --------------------
|
| 68 |
-
with tabs[1]:
|
| 69 |
-
st.subheader("📘 PDF Summary")
|
| 70 |
-
if st.button("Generate Summary", key="sum"):
|
| 71 |
try:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------- app.py -------------
|
| 2 |
import streamlit as st
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import pdfplumber, pytesseract, time, re, logging, os
|
| 6 |
+
from PIL import Image
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 10 |
from transformers import pipeline
|
| 11 |
+
import numpy as np
|
| 12 |
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
###############################################################################
|
| 17 |
+
# Page layout
|
| 18 |
+
###############################################################################
|
| 19 |
+
st.set_page_config(page_title="PDF Chat & Summarize", layout="wide")
|
| 20 |
+
st.markdown("""
|
| 21 |
+
<style>
|
| 22 |
+
.block-container { padding-top: 1rem; padding-bottom: 0; }
|
| 23 |
+
.stTabs [data-baseweb="tab-list"] { gap: 4px; }
|
| 24 |
+
.stTabs [data-baseweb="tab"] { padding: 8px 24px; }
|
| 25 |
+
.chat-msg { padding: 0.5rem 1rem; border-radius: 8px; margin: 0.3rem 0; }
|
| 26 |
+
.user { background-color: #e3f2fd; margin-left: 20%; }
|
| 27 |
+
.assistant { background-color: #f1f3f4; margin-right: 20%; }
|
| 28 |
+
</style>
|
| 29 |
+
""", unsafe_allow_html=True)
|
| 30 |
|
| 31 |
+
###############################################################################
|
| 32 |
+
# Cached heavy objects
|
| 33 |
+
###############################################################################
|
| 34 |
+
@st.cache_resource(show_spinner=False)
|
| 35 |
+
def load_embed():
|
| 36 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
| 37 |
|
| 38 |
+
@st.cache_resource(show_spinner=False)
|
| 39 |
+
def load_qa():
|
| 40 |
+
return pipeline("text2text-generation", model="google/flan-t5-large", max_length=512)
|
| 41 |
|
| 42 |
+
@st.cache_resource(show_spinner=False)
|
| 43 |
+
def load_sum():
|
| 44 |
+
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250)
|
| 45 |
|
| 46 |
+
embed = load_embed()
|
| 47 |
+
qa_pipe = load_qa()
|
| 48 |
+
sum_pipe = load_sum()
|
|
|
|
| 49 |
|
| 50 |
+
###############################################################################
|
| 51 |
+
# Helpers
|
| 52 |
+
###############################################################################
|
| 53 |
+
def extract_pdf(uploaded_file):
|
| 54 |
+
"""Return (plain text, image_list)"""
|
| 55 |
+
text = ""
|
| 56 |
+
images = []
|
| 57 |
+
with pdfplumber.open(BytesIO(uploaded_file.getbuffer())) as pdf:
|
| 58 |
+
for page in pdf.pages:
|
| 59 |
+
txt = page.extract_text_layout() or page.extract_text()
|
| 60 |
+
if not txt:
|
| 61 |
+
img = page.to_image(resolution=200).original
|
| 62 |
+
txt = pytesseract.image_to_string(img)
|
| 63 |
+
text += txt + "\n"
|
| 64 |
+
for img in page.images:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
try:
|
| 66 |
+
x0, y0, x1, y1 = img["x0"], img["y0"], img["x1"], img["y1"]
|
| 67 |
+
pil = page.within_bbox((x0, y0, x1, y1)).to_image(resolution=200).original
|
| 68 |
+
images.append(pil)
|
| 69 |
+
except Exception:
|
| 70 |
+
pass
|
| 71 |
+
return text.strip(), images
|
| 72 |
+
|
| 73 |
+
def build_index(text):
|
| 74 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=80)
|
| 75 |
+
chunks = splitter.split_text(text)
|
| 76 |
+
vectors = embed.encode(chunks, show_progress_bar=False, batch_size=64)
|
| 77 |
+
index = FAISS.from_embeddings(list(zip(chunks, vectors)), embed)
|
| 78 |
+
return index
|
| 79 |
+
|
| 80 |
+
def summarize(text):
|
| 81 |
+
if len(text) < 50:
|
| 82 |
+
return "Document too short to summarize."
|
| 83 |
+
# pick top 3k chars to stay within model limit
|
| 84 |
+
truncated = text[:3000]
|
| 85 |
+
return sum_pipe(truncated, max_length=250, min_length=60, do_sample=False)[0]["summary_text"]
|
| 86 |
+
|
| 87 |
+
def answer(question, index):
|
| 88 |
+
if index is None:
|
| 89 |
+
return "Please upload & process a PDF first."
|
| 90 |
+
docs = index.similarity_search(question, k=4)
|
| 91 |
+
context = "\n".join([d.page_content for d in docs])
|
| 92 |
+
prompt = f"Answer the question using ONLY the context below.\n\nContext:\n{context}\n\nQuestion: {question}"
|
| 93 |
+
return qa_pipe(prompt, max_length=256, do_sample=False)[0]["generated_text"]
|
| 94 |
+
|
| 95 |
+
###############################################################################
|
| 96 |
+
# Session init
|
| 97 |
+
###############################################################################
|
| 98 |
+
if "messages" not in st.session_state:
|
| 99 |
+
st.session_state.messages = []
|
| 100 |
+
if "index" not in st.session_state:
|
| 101 |
+
st.session_state.index = None
|
| 102 |
+
if "raw_text" not in st.session_state:
|
| 103 |
+
st.session_state.raw_text = ""
|
| 104 |
+
if "images" not in st.session_state:
|
| 105 |
+
st.session_state.images = []
|
| 106 |
+
|
| 107 |
+
###############################################################################
|
| 108 |
+
# Sidebar
|
| 109 |
+
###############################################################################
|
| 110 |
+
with st.sidebar:
|
| 111 |
+
st.subheader("📁 Upload PDF")
|
| 112 |
+
uploaded = st.file_uploader("Choose a file", type="pdf", label_visibility="collapsed")
|
| 113 |
+
if uploaded and st.button("Process PDF"):
|
| 114 |
+
with st.spinner("Extracting text & images…"):
|
| 115 |
+
st.session_state.raw_text, st.session_state.images = extract_pdf(uploaded)
|
| 116 |
+
st.session_state.index = build_index(st.session_state.raw_text)
|
| 117 |
+
st.session_state.messages = []
|
| 118 |
+
st.toast("PDF ready!")
|
| 119 |
+
|
| 120 |
+
if st.session_state.images:
|
| 121 |
+
st.subheader("🖼️ Extracted Images")
|
| 122 |
+
for im in st.session_state.images:
|
| 123 |
+
st.image(im, use_column_width=True)
|
| 124 |
+
|
| 125 |
+
###############################################################################
|
| 126 |
+
# Main Tabs
|
| 127 |
+
###############################################################################
|
| 128 |
+
tab_chat, tab_sum = st.tabs(["💬 Chat", "📄 Summarize"])
|
| 129 |
+
|
| 130 |
+
with tab_chat:
|
| 131 |
+
if st.session_state.index is None:
|
| 132 |
+
st.info("Upload & process a PDF first using the sidebar.")
|
| 133 |
+
else:
|
| 134 |
+
# history
|
| 135 |
+
for role, msg in st.session_state.messages:
|
| 136 |
+
css = "user" if role == "user" else "assistant"
|
| 137 |
+
st.markdown(f'<div class="chat-msg {css}">{msg}</div>', unsafe_allow_html=True)
|
| 138 |
+
|
| 139 |
+
# input
|
| 140 |
+
if question := st.chat_input("Ask anything about the PDF…"):
|
| 141 |
+
st.session_state.messages.append(("user", question))
|
| 142 |
+
st.markdown(f'<div class="chat-msg user">{question}</div>', unsafe_allow_html=True)
|
| 143 |
+
|
| 144 |
+
with st.spinner("Thinking…"):
|
| 145 |
+
resp = answer(question, st.session_state.index)
|
| 146 |
+
st.session_state.messages.append(("assistant", resp))
|
| 147 |
+
st.markdown(f'<div class="chat-msg assistant">{resp}</div>', unsafe_allow_html=True)
|
| 148 |
+
|
| 149 |
+
with tab_sum:
|
| 150 |
+
if not st.session_state.raw_text:
|
| 151 |
+
st.info("Upload & process a PDF first.")
|
| 152 |
+
else:
|
| 153 |
+
if st.button("Generate Summary"):
|
| 154 |
+
with st.spinner("Summarizing…"):
|
| 155 |
+
summary = summarize(st.session_state.raw_text)
|
| 156 |
+
st.subheader("Summary")
|
| 157 |
+
st.write(summary)
|