File size: 27,079 Bytes
fab07ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
2023-06-02 14:25:08,771 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,775 Model: "TARSClassifier(
  (tars_model): TextClassifier(
    (decoder): Linear(in_features=768, out_features=2, bias=True)
    (dropout): Dropout(p=0.0, inplace=False)
    (locked_dropout): LockedDropout(p=0.0)
    (word_dropout): WordDropout(p=0.0)
    (loss_function): CrossEntropyLoss()
    (document_embeddings): TransformerDocumentEmbeddings(
      (model): BertModel(
        (embeddings): BertEmbeddings(
          (word_embeddings): Embedding(30522, 768, padding_idx=0)
          (position_embeddings): Embedding(512, 768)
          (token_type_embeddings): Embedding(2, 768)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (encoder): BertEncoder(
          (layer): ModuleList(
            (0): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (1): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (2): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (3): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (4): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (5): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (6): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (7): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (8): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (9): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (10): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (11): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (pooler): BertPooler(
          (dense): Linear(in_features=768, out_features=768, bias=True)
          (activation): Tanh()
        )
      )
    )
  )
)"
2023-06-02 14:25:08,776 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,777 Corpus: "Corpus: 320 train + 40 dev + 40 test sentences"
2023-06-02 14:25:08,778 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,779 Parameters:
2023-06-02 14:25:08,780  - learning_rate: "0.020000"
2023-06-02 14:25:08,780  - mini_batch_size: "16"
2023-06-02 14:25:08,781  - patience: "3"
2023-06-02 14:25:08,782  - anneal_factor: "0.5"
2023-06-02 14:25:08,782  - max_epochs: "6"
2023-06-02 14:25:08,783  - shuffle: "True"
2023-06-02 14:25:08,784  - train_with_dev: "False"
2023-06-02 14:25:08,784  - batch_growth_annealing: "False"
2023-06-02 14:25:08,785 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,785 Model training base path: "few-shot-model-avoid-multi"
2023-06-02 14:25:08,785 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,786 Device: cpu
2023-06-02 14:25:08,787 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:08,787 Embeddings storage mode: cpu
2023-06-02 14:25:08,788 ----------------------------------------------------------------------------------------------------
2023-06-02 14:25:22,986 epoch 1 - iter 2/20 - loss 0.08201581 - samples/sec: 2.28 - lr: 0.020000
2023-06-02 14:25:38,289 epoch 1 - iter 4/20 - loss 0.07553399 - samples/sec: 2.09 - lr: 0.020000
2023-06-02 14:25:55,912 epoch 1 - iter 6/20 - loss 0.07010122 - samples/sec: 1.82 - lr: 0.020000
2023-06-02 14:26:13,667 epoch 1 - iter 8/20 - loss 0.06748231 - samples/sec: 1.80 - lr: 0.020000
2023-06-02 14:26:32,776 epoch 1 - iter 10/20 - loss 0.06542407 - samples/sec: 1.68 - lr: 0.020000
2023-06-02 14:26:51,692 epoch 1 - iter 12/20 - loss 0.06340573 - samples/sec: 1.69 - lr: 0.020000
2023-06-02 14:27:08,675 epoch 1 - iter 14/20 - loss 0.06166933 - samples/sec: 1.89 - lr: 0.020000
2023-06-02 14:27:28,766 epoch 1 - iter 16/20 - loss 0.05963777 - samples/sec: 1.59 - lr: 0.020000
2023-06-02 14:27:48,103 epoch 1 - iter 18/20 - loss 0.05749305 - samples/sec: 1.66 - lr: 0.020000
2023-06-02 14:28:08,995 epoch 1 - iter 20/20 - loss 0.05420271 - samples/sec: 1.53 - lr: 0.020000
2023-06-02 14:28:09,002 ----------------------------------------------------------------------------------------------------
2023-06-02 14:28:09,006 EPOCH 1 done: loss 0.0542 - lr 0.020000
2023-06-02 14:28:27,486 Evaluating as a multi-label problem: False
2023-06-02 14:28:27,507 DEV : loss 0.13954095542430878 - f1-score (micro avg)  0.9474
2023-06-02 14:28:27,522 BAD EPOCHS (no improvement): 0
2023-06-02 14:28:27,524 saving best model
2023-06-02 14:28:28,463 ----------------------------------------------------------------------------------------------------
2023-06-02 14:28:49,872 epoch 2 - iter 2/20 - loss 0.03232752 - samples/sec: 1.51 - lr: 0.020000
2023-06-02 14:29:08,736 epoch 2 - iter 4/20 - loss 0.02754687 - samples/sec: 1.70 - lr: 0.020000
2023-06-02 14:29:28,976 epoch 2 - iter 6/20 - loss 0.02429472 - samples/sec: 1.58 - lr: 0.020000
2023-06-02 14:29:47,566 epoch 2 - iter 8/20 - loss 0.01991154 - samples/sec: 1.72 - lr: 0.020000
2023-06-02 14:30:06,087 epoch 2 - iter 10/20 - loss 0.02051827 - samples/sec: 1.73 - lr: 0.020000
2023-06-02 14:30:24,854 epoch 2 - iter 12/20 - loss 0.01816160 - samples/sec: 1.71 - lr: 0.020000
2023-06-02 14:30:44,124 epoch 2 - iter 14/20 - loss 0.01722967 - samples/sec: 1.66 - lr: 0.020000
2023-06-02 14:31:02,752 epoch 2 - iter 16/20 - loss 0.01540543 - samples/sec: 1.72 - lr: 0.020000
2023-06-02 14:31:21,526 epoch 2 - iter 18/20 - loss 0.01409036 - samples/sec: 1.71 - lr: 0.020000
2023-06-02 14:31:40,793 epoch 2 - iter 20/20 - loss 0.01284174 - samples/sec: 1.66 - lr: 0.020000
2023-06-02 14:31:40,799 ----------------------------------------------------------------------------------------------------
2023-06-02 14:31:40,801 EPOCH 2 done: loss 0.0128 - lr 0.020000
2023-06-02 14:31:59,920 Evaluating as a multi-label problem: True
2023-06-02 14:31:59,965 DEV : loss 0.02552533522248268 - f1-score (micro avg)  0.9877
2023-06-02 14:31:59,984 BAD EPOCHS (no improvement): 0
2023-06-02 14:31:59,987 saving best model
2023-06-02 14:32:00,905 ----------------------------------------------------------------------------------------------------
2023-06-02 14:32:21,756 epoch 3 - iter 2/20 - loss 0.00107591 - samples/sec: 1.54 - lr: 0.020000
2023-06-02 14:32:41,724 epoch 3 - iter 4/20 - loss 0.00104748 - samples/sec: 1.60 - lr: 0.020000
2023-06-02 14:33:00,542 epoch 3 - iter 6/20 - loss 0.00087392 - samples/sec: 1.70 - lr: 0.020000
2023-06-02 14:33:18,259 epoch 3 - iter 8/20 - loss 0.00069769 - samples/sec: 1.81 - lr: 0.020000
2023-06-02 14:33:35,557 epoch 3 - iter 10/20 - loss 0.00058949 - samples/sec: 1.85 - lr: 0.020000
2023-06-02 14:33:52,437 epoch 3 - iter 12/20 - loss 0.00065764 - samples/sec: 1.90 - lr: 0.020000
2023-06-02 14:34:09,061 epoch 3 - iter 14/20 - loss 0.00219498 - samples/sec: 1.93 - lr: 0.020000
2023-06-02 14:34:26,443 epoch 3 - iter 16/20 - loss 0.00285339 - samples/sec: 1.84 - lr: 0.020000
2023-06-02 14:34:44,161 epoch 3 - iter 18/20 - loss 0.00272177 - samples/sec: 1.81 - lr: 0.020000
2023-06-02 14:35:00,155 epoch 3 - iter 20/20 - loss 0.00257680 - samples/sec: 2.00 - lr: 0.020000
2023-06-02 14:35:00,161 ----------------------------------------------------------------------------------------------------
2023-06-02 14:35:00,163 EPOCH 3 done: loss 0.0026 - lr 0.020000
2023-06-02 14:35:14,530 Evaluating as a multi-label problem: False
2023-06-02 14:35:14,541 DEV : loss 0.0012317668879404664 - f1-score (micro avg)  1.0
2023-06-02 14:35:14,563 BAD EPOCHS (no improvement): 0
2023-06-02 14:35:14,567 saving best model
2023-06-02 14:35:15,339 ----------------------------------------------------------------------------------------------------
2023-06-02 14:35:33,110 epoch 4 - iter 2/20 - loss 0.00016652 - samples/sec: 1.81 - lr: 0.020000
2023-06-02 14:35:48,512 epoch 4 - iter 4/20 - loss 0.00014895 - samples/sec: 2.08 - lr: 0.020000
2023-06-02 14:36:07,826 epoch 4 - iter 6/20 - loss 0.00011768 - samples/sec: 1.66 - lr: 0.020000
2023-06-02 14:36:24,533 epoch 4 - iter 8/20 - loss 0.00009617 - samples/sec: 1.92 - lr: 0.020000
2023-06-02 14:36:41,069 epoch 4 - iter 10/20 - loss 0.00022733 - samples/sec: 1.94 - lr: 0.020000
2023-06-02 14:36:58,662 epoch 4 - iter 12/20 - loss 0.00162427 - samples/sec: 1.82 - lr: 0.020000
2023-06-02 14:37:15,836 epoch 4 - iter 14/20 - loss 0.00203344 - samples/sec: 1.87 - lr: 0.020000
2023-06-02 14:37:31,891 epoch 4 - iter 16/20 - loss 0.00202072 - samples/sec: 2.00 - lr: 0.020000
2023-06-02 14:37:52,319 epoch 4 - iter 18/20 - loss 0.00197607 - samples/sec: 1.57 - lr: 0.020000
2023-06-02 14:38:13,020 epoch 4 - iter 20/20 - loss 0.00178715 - samples/sec: 1.55 - lr: 0.020000
2023-06-02 14:38:13,025 ----------------------------------------------------------------------------------------------------
2023-06-02 14:38:13,026 EPOCH 4 done: loss 0.0018 - lr 0.020000
2023-06-02 14:38:28,160 Evaluating as a multi-label problem: False
2023-06-02 14:38:28,168 DEV : loss 0.00010660152474883944 - f1-score (micro avg)  1.0
2023-06-02 14:38:28,183 BAD EPOCHS (no improvement): 0
2023-06-02 14:38:28,185 ----------------------------------------------------------------------------------------------------
2023-06-02 14:38:44,255 epoch 5 - iter 2/20 - loss 0.00003677 - samples/sec: 2.00 - lr: 0.020000
2023-06-02 14:39:00,153 epoch 5 - iter 4/20 - loss 0.00006295 - samples/sec: 2.02 - lr: 0.020000
2023-06-02 14:39:20,191 epoch 5 - iter 6/20 - loss 0.00005841 - samples/sec: 1.60 - lr: 0.020000
2023-06-02 14:39:38,713 epoch 5 - iter 8/20 - loss 0.00005065 - samples/sec: 1.73 - lr: 0.020000
2023-06-02 14:40:00,109 epoch 5 - iter 10/20 - loss 0.00004766 - samples/sec: 1.50 - lr: 0.020000
2023-06-02 14:40:21,604 epoch 5 - iter 12/20 - loss 0.00004357 - samples/sec: 1.49 - lr: 0.020000
2023-06-02 14:40:39,866 epoch 5 - iter 14/20 - loss 0.00051349 - samples/sec: 1.75 - lr: 0.020000
2023-06-02 14:40:57,320 epoch 5 - iter 16/20 - loss 0.00045473 - samples/sec: 1.83 - lr: 0.020000
2023-06-02 14:41:17,345 epoch 5 - iter 18/20 - loss 0.00040704 - samples/sec: 1.60 - lr: 0.020000
2023-06-02 14:41:35,814 epoch 5 - iter 20/20 - loss 0.00036947 - samples/sec: 1.73 - lr: 0.020000
2023-06-02 14:41:35,822 ----------------------------------------------------------------------------------------------------
2023-06-02 14:41:35,824 EPOCH 5 done: loss 0.0004 - lr 0.020000
2023-06-02 14:41:53,128 Evaluating as a multi-label problem: False
2023-06-02 14:41:53,146 DEV : loss 5.184596011531539e-05 - f1-score (micro avg)  1.0
2023-06-02 14:41:53,172 BAD EPOCHS (no improvement): 0
2023-06-02 14:41:53,175 ----------------------------------------------------------------------------------------------------
2023-06-02 14:42:11,831 epoch 6 - iter 2/20 - loss 0.00021853 - samples/sec: 1.73 - lr: 0.020000
2023-06-02 14:42:29,786 epoch 6 - iter 4/20 - loss 0.00011888 - samples/sec: 1.78 - lr: 0.020000
2023-06-02 14:42:50,189 epoch 6 - iter 6/20 - loss 0.00008669 - samples/sec: 1.57 - lr: 0.020000
2023-06-02 14:43:07,162 epoch 6 - iter 8/20 - loss 0.00007672 - samples/sec: 1.89 - lr: 0.020000
2023-06-02 14:43:24,385 epoch 6 - iter 10/20 - loss 0.00006549 - samples/sec: 1.86 - lr: 0.020000
2023-06-02 14:43:40,104 epoch 6 - iter 12/20 - loss 0.00005759 - samples/sec: 2.04 - lr: 0.020000
2023-06-02 14:43:56,973 epoch 6 - iter 14/20 - loss 0.00005522 - samples/sec: 1.90 - lr: 0.020000
2023-06-02 14:44:13,936 epoch 6 - iter 16/20 - loss 0.00005217 - samples/sec: 1.89 - lr: 0.020000
2023-06-02 14:44:31,500 epoch 6 - iter 18/20 - loss 0.00004748 - samples/sec: 1.82 - lr: 0.020000
2023-06-02 14:44:49,136 epoch 6 - iter 20/20 - loss 0.00004882 - samples/sec: 1.82 - lr: 0.020000
2023-06-02 14:44:49,139 ----------------------------------------------------------------------------------------------------
2023-06-02 14:44:49,141 EPOCH 6 done: loss 0.0000 - lr 0.020000
2023-06-02 14:45:04,949 Evaluating as a multi-label problem: False
2023-06-02 14:45:04,963 DEV : loss 2.4813929485389963e-05 - f1-score (micro avg)  1.0
2023-06-02 14:45:04,990 BAD EPOCHS (no improvement): 0
2023-06-02 14:45:05,742 ----------------------------------------------------------------------------------------------------
2023-06-02 14:45:05,744 loading file few-shot-model-avoid-multi\best-model.pt
2023-06-02 14:45:24,058 Evaluating as a multi-label problem: False
2023-06-02 14:45:24,068 1.0	1.0	1.0	1.0
2023-06-02 14:45:24,070 
Results:
- F-score (micro) 1.0
- F-score (macro) 1.0
- Accuracy 1.0

By class:
                  precision    recall  f1-score   support

avoid_situations     1.0000    1.0000    1.0000        12
    avoid_others     1.0000    1.0000    1.0000        12
   avoid_stimuli     1.0000    1.0000    1.0000        10
avoid_activities     1.0000    1.0000    1.0000         6

        accuracy                         1.0000        40
       macro avg     1.0000    1.0000    1.0000        40
    weighted avg     1.0000    1.0000    1.0000        40

2023-06-02 14:45:24,071 ----------------------------------------------------------------------------------------------------