Spaces:
Running
Running
File size: 22,425 Bytes
fab07ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
{
"cells": [
{
"cell_type": "markdown",
"id": "f56cc5ad",
"metadata": {},
"source": [
"# NDIS Project - Azure OpenAI - PBSP Scoring - Page 4 - When to implement strategies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8d844ea",
"metadata": {
"hide_input": false
},
"outputs": [],
"source": [
"import openai\n",
"import re\n",
"from ipywidgets import interact\n",
"import ipywidgets as widgets\n",
"from IPython.display import display, clear_output, Javascript, HTML, Markdown\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.ticker as mtick\n",
"import json\n",
"import spacy\n",
"from spacy import displacy\n",
"from dotenv import load_dotenv\n",
"import pandas as pd\n",
"import argilla as rg\n",
"from argilla.metrics.text_classification import f1\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"%matplotlib inline\n",
"pd.set_option('display.max_rows', 500)\n",
"pd.set_option('display.max_colwidth', 10000)\n",
"pd.set_option('display.width', 10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96b83a1d",
"metadata": {},
"outputs": [],
"source": [
"#initializations\n",
"openai.api_key = os.environ['API_KEY']\n",
"openai.api_base = os.environ['API_BASE']\n",
"openai.api_type = os.environ['API_TYPE']\n",
"openai.api_version = os.environ['API_VERSION']\n",
"deployment_name = os.environ['DEPLOYMENT_ID']\n",
"\n",
"#argilla\n",
"rg.init(\n",
" api_url=os.environ[\"ARGILLA_API_URL\"],\n",
" api_key=os.environ[\"ARGILLA_API_KEY\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8934eadb",
"metadata": {},
"outputs": [],
"source": [
"#sentence extraction\n",
"def extract_sentences(paragraph):\n",
" symbols = ['\\\\.', '!', '\\\\?', ';', ':', ',', '\\\\_', '\\n', '\\\\-']\n",
" pattern = '|'.join([f'{symbol}' for symbol in symbols])\n",
" sentences = re.split(pattern, paragraph)\n",
" sentences = [sentence.strip() for sentence in sentences if sentence.strip()]\n",
" return sentences"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02fda761",
"metadata": {},
"outputs": [],
"source": [
"def process_response(response, query):\n",
" sentences = []\n",
" topics = []\n",
" scores = []\n",
" lines = response.strip().split(\"\\n\")\n",
" for line in lines:\n",
" if \"When to implement:\" in line:\n",
" topic = \"WHEN TO IMPLEMENT\"\n",
" elif \"None:\" in line:\n",
" topic = \"NONE\"\n",
" else:\n",
" try:\n",
" phrase = line.split(\"(Confidence Score:\")[0].strip()\n",
" score = float(line.split(\"(Confidence Score:\")[1].strip().replace(\")\", \"\"))\n",
" sentences.append(phrase)\n",
" topics.append(topic)\n",
" scores.append(score)\n",
" except:\n",
" pass\n",
" result_df = pd.DataFrame({'Phrase': sentences, 'Topic': topics, 'Score': scores})\n",
" try:\n",
" result_df['Phrase'] = result_df['Phrase'].str.replace('\\d+\\.', '', regex=True)\n",
" result_df['Phrase'] = result_df['Phrase'].str.replace('^\\s', '', regex=True)\n",
" except:\n",
" sentences = extract_sentences(query)\n",
" topics = ['NONE'] * len(sentences)\n",
" scores = [0.9] * len(sentences)\n",
" result_df = pd.DataFrame({'Phrase': sentences, 'Topic': topics, 'Score': scores})\n",
" return result_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "714fafb4",
"metadata": {},
"outputs": [],
"source": [
"def get_prompt(query):\n",
" prompt = f\"\"\"\n",
" The paragraph below, which is written by a disability practitioner in a behaviour support plan, covers one or more strategies that will be implemented when dealing with the person with a disability:\n",
"\n",
" Practitioner Paragraph:\n",
" {query}\n",
"\n",
" Requirement:\n",
" - From the practitioner paragraph above, identify the phrases that represent when each of the mentioned strategies needs to be implemented. \n",
"\n",
" Specifications of a correct answer:\n",
" - Please provide a response that closely matches the information in the practitioner paragraph and does not deviate significantly from it.\n",
" - Provide your answer in a numbered list. \n",
" - All the phrases in your answer must be exact substrings in the practitioner paragraph. without changing any characters.\n",
" - All the upper case and lower case characters in the phrases in your answer must match the upper case and lower case characters in the practitioner paragraph.\n",
" - Do not add an \"ing\" to any verbs in your answer if the original verbs in the practitioner paragraph do not include \"ing\".\n",
" - Start numbering the phrases from number 1.\n",
" - Start your answer for the phrases with the title \"When to implement:\"\n",
" - For each phrase in your answer, provide a confidence score that ranges between 0.50 and 1.00, where a score of 0.50 indicates you are very weakly confident that the phrase represents when the strategy needs to be implemented, whereas a score of 1.00 indicates you are very strongly confident that the phrase represents when the strategy needs to be implemented.\n",
" - Never include any phrase in your answer that does not exist in the practitioner paragraph.\n",
" - If none of the phrases in the practitioner paragraph mentions when the strategies need to be implemented, do not include a list titled \"When to implement:\" in your answer.\n",
" - Include another numbered list titled \"None:\", which includes all the remaining phrases in the practitioner paragraph that do not represent when the strategies need to be implemented. Provide a confidence score for each of these phrases as well.\n",
"\n",
" Example correct answer:\n",
"\n",
" When to implement:\n",
" 1. volunteer at an animal shelter or attend a petting zoo on a monthly basis. (Confidence Score: 0.97)\n",
" 2. facilitating outdoor activities such as walks or hikes on a weekly basis. (Confidence Score: 0.95)\n",
" 3. providing job coaching to help Eddie succeed in his role initially on a daily basis and gradually decreasing to bi-weekly. (Confidence Score: 0.93)\n",
" 4. identifying educational resources such as online courses or local music schools on an ongoing basis. (Confidence Score: 0.90)\n",
"\n",
" None:\n",
" 1. I support Eddie, who is a 25-year old man with a disability. (Confidence Score: 0.96)\n",
" 2. Taylor has a plenty of likes, interests and hobbies. In the following lines, I will expain the strategies I am using these to enhance his quality of life. (Confidence Score: 0.94)\n",
" \"\"\"\n",
" return prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99da147a",
"metadata": {},
"outputs": [],
"source": [
"def get_response_chatgpt(prompt):\n",
" response=openai.ChatCompletion.create( \n",
" engine=deployment_name, \n",
" messages=[ \n",
" {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"}, \n",
" {\"role\": \"user\", \"content\": prompt} \n",
" ],\n",
" temperature=0\n",
" )\n",
" reply = response[\"choices\"][0][\"message\"][\"content\"]\n",
" return reply"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4592a82",
"metadata": {},
"outputs": [],
"source": [
"#query = \"\"\"\n",
"#As a disability practitioner who supports Taylor, a 15-year-old boy with a disability, there are several strategies that can be implemented to enhance his quality of life. One important strategy is to identify and support his interests. Taylor enjoys playing video games, so incorporating video game time into his daily schedule would be beneficial for him. Additionally, Taylor is a fan of superhero movies, so setting up movie nights with his family or friends once a month would be a fun way for him to enjoy his interest. Another strategy is to support Taylor's relationships. Taylor has expressed an interest in making new friends, so facilitating social events or encouraging him to join a club related to his interests could help him expand his social circle. Additionally, Taylor has a close relationship with his older sister, so setting up a weekly video chat or arranging for them to participate in an activity together every other week would be important. In addition, supporting Taylor's health is important for his overall well-being. Taylor enjoys swimming, so facilitating regular swimming sessions at the local pool twice a week would be beneficial for his physical and mental health. These strategies aim to enhance Taylor's quality of life and promote his overall well-being. Another important strategy is to support Taylor's education. Taylor has expressed a desire to improve his math skills, so I will work with him to identify educational resources and set up weekly tutoring sessions. Additionally, Taylor has shown an interest in learning to cook, so setting up bi-weekly cooking classes would provide him with an opportunity to learn a new skill and gain confidence in the kitchen. These strategies will help Taylor pursue his educational interests and achieve his personal goals.\n",
"#\"\"\"\n",
"#prompt = get_prompt(query)\n",
"#response = get_response_chatgpt(prompt)\n",
"#result_df = process_response(response, query)\n",
"#print(response)\n",
"#result_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56d2bac8",
"metadata": {},
"outputs": [],
"source": [
"def convert_df(result_df):\n",
" new_df = pd.DataFrame(columns=['text', 'prediction'])\n",
" new_df['text'] = result_df['Phrase']\n",
" new_df['prediction'] = result_df.apply(lambda row: [[row['Topic'], row['Score']]], axis=1)\n",
" return new_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "905eaf2a",
"metadata": {},
"outputs": [],
"source": [
"topic_color_dict = {\n",
" 'WHEN TO IMPLEMENT': '#90EE90',\n",
" 'NONE': '#F08080'\n",
" }\n",
"\n",
"def color(df, color):\n",
" return df.style.format({'Score': '{:,.2%}'.format}).bar(subset=['Score'], color=color)\n",
"\n",
"def annotate_query(highlights, query, topics):\n",
" ents = []\n",
" for h, t in zip(highlights, topics):\n",
" ent_dict = {}\n",
" for match in re.finditer(h, query, re.IGNORECASE):\n",
" ent_dict = {\"start\": match.start(), \"end\": match.end(), \"label\": t}\n",
" break\n",
" if len(ent_dict.keys()) > 0:\n",
" ents.append(ent_dict)\n",
" else:\n",
" h_re = \" \".join(h.split(\" \")[1:])\n",
" print(h_re)\n",
" for match in re.finditer(h_re, query, re.IGNORECASE):\n",
" ent_dict = {\"start\": match.start(), \"end\": match.end(), \"label\": t}\n",
" break\n",
" if len(ent_dict.keys()) > 0:\n",
" ents.append(ent_dict)\n",
" return ents\n",
"\n",
"def path_to_image_html(path):\n",
" return path\n",
"\n",
"passing_score = 0.75\n",
"final_passing = 0.0\n",
"def display_final_df(agg_df):\n",
" crits = [\n",
" 'WHEN TO IMPLEMENT'\n",
" ]\n",
" if not isinstance(agg_df, str):\n",
" tags = []\n",
" orig_crits = crits\n",
" crits = [x for x in crits if x in agg_df.index.tolist()]\n",
" bools = [agg_df.loc[crit, 'Final_Score'] > final_passing for crit in crits]\n",
" paths = ['YES' if x else 'NO' for x in bools]\n",
" df = pd.DataFrame({'When to Implement': crits, 'USED': paths})\n",
" rem_crits = [x for x in orig_crits if x not in crits]\n",
" if len(rem_crits) > 0:\n",
" df2 = pd.DataFrame({'When to Implement': rem_crits, 'USED': ['NO'] * len(rem_crits)})\n",
" df = pd.concat([df, df2])\n",
" else:\n",
" df = pd.DataFrame({'When to Implement': [crits[0]], 'USED': ['NO']})\n",
" df = df.set_index('When to Implement')\n",
" pd.set_option('display.max_colwidth', None)\n",
" display(HTML('<div style=\"text-align: center;\">' + df.to_html(classes=[\"align-center\"], index=True, escape=False ,formatters=dict(USED=path_to_image_html)) + '</div>'))\n",
" "
]
},
{
"cell_type": "markdown",
"id": "2c6e9fe7",
"metadata": {},
"source": [
"### <font color='red'>Quality Marker Q7a:</font> \n",
"#### All strategies are described in enough detail for someone to understand what needs to be done <font color='red'>and when it needs to be implemented.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76dd8cab",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"#demo with Voila\n",
"\n",
"bhvr_label = widgets.Label(value='Please type your answer:')\n",
"bhvr_text_input = widgets.Textarea(\n",
" value='',\n",
" placeholder='Type your answer',\n",
" description='',\n",
" disabled=False,\n",
" layout={'height': '300px', 'width': '90%'}\n",
")\n",
"\n",
"bhvr_nlp_btn = widgets.Button(\n",
" description='Score Answer',\n",
" disabled=False,\n",
" button_style='success', # 'success', 'info', 'warning', 'danger' or ''\n",
" tooltip='Score Answer',\n",
" icon='check',\n",
" layout={'height': '70px', 'width': '250px'}\n",
")\n",
"bhvr_agr_btn = widgets.Button(\n",
" description='Validate Data',\n",
" disabled=False,\n",
" button_style='success', # 'success', 'info', 'warning', 'danger' or ''\n",
" tooltip='Validate Data',\n",
" icon='check',\n",
" layout={'height': '70px', 'width': '250px'}\n",
")\n",
"bhvr_eval_btn = widgets.Button(\n",
" description='Evaluate Model',\n",
" disabled=False,\n",
" button_style='success', # 'success', 'info', 'warning', 'danger' or ''\n",
" tooltip='Evaluate Model',\n",
" icon='check',\n",
" layout={'height': '70px', 'width': '250px'}\n",
")\n",
"btn_box = widgets.HBox([bhvr_nlp_btn, bhvr_agr_btn, bhvr_eval_btn], \n",
" layout={'width': '100%', 'height': '160%'})\n",
"bhvr_outt = widgets.Output()\n",
"bhvr_outt.layout.height = '100%'\n",
"bhvr_outt.layout.width = '100%'\n",
"bhvr_box = widgets.VBox([bhvr_text_input, btn_box, bhvr_outt], \n",
" layout={'width': '100%', 'height': '160%'})\n",
"dataset_rg_name = 'pbsp-page4-when-to-implement-argilla-ds'\n",
"dataset_rg_url = f'http://localhost:6900/datasets/argilla/{dataset_rg_name}'\n",
"agrilla_df = None\n",
"annotated = False\n",
"def on_bhvr_button_next(b):\n",
" global agrilla_df\n",
" with bhvr_outt:\n",
" clear_output()\n",
" query = bhvr_text_input.value\n",
" prompt = get_prompt(query)\n",
" response = get_response_chatgpt(prompt)\n",
" result_df = process_response(response, query)\n",
" sub_result_df = result_df[(result_df['Score'] >= passing_score) & (result_df['Topic'] != 'NONE')]\n",
" sub_2_result_df = result_df[result_df['Topic'] == 'NONE']\n",
" highlights = []\n",
" if len(sub_result_df) > 0:\n",
" highlights = sub_result_df['Phrase'].tolist()\n",
" highlight_topics = sub_result_df['Topic'].tolist() \n",
" ents = annotate_query(highlights, query, highlight_topics)\n",
" colors = {}\n",
" for ent, ht in zip(ents, highlight_topics):\n",
" colors[ent['label']] = topic_color_dict[ht]\n",
"\n",
" ex = [{\"text\": query,\n",
" \"ents\": ents,\n",
" \"title\": None}]\n",
" title = \"When to Implement Highlights\"\n",
" display(HTML(f'<center><h1>{title}</h1></center>'))\n",
" html = displacy.render(ex, style=\"ent\", manual=True, jupyter=True, options={'colors': colors})\n",
" display(HTML(html))\n",
" title = \"When to Implement Classifications\"\n",
" display(HTML(f'<center><h1>{title}</h1></center>'))\n",
" for top in topic_color_dict.keys():\n",
" top_result_df = sub_result_df[sub_result_df['Topic'] == top]\n",
" if len(top_result_df) > 0:\n",
" top_result_df = top_result_df.sort_values(by='Score', ascending=False).reset_index(drop=True)\n",
" top_result_df = top_result_df.set_index('Phrase')\n",
" top_result_df = top_result_df[['Score']]\n",
" display(HTML(\n",
" f'<left><h2 style=\"text-decoration: underline; text-decoration-color:{topic_color_dict[top]};\">{top}</h2></left>'))\n",
" display(color(top_result_df, topic_color_dict[top]))\n",
" \n",
" agg_df = sub_result_df.groupby('Topic')['Score'].sum()\n",
" agg_df = agg_df.to_frame()\n",
" agg_df.index.name = 'Topic'\n",
" agg_df.columns = ['Total Score']\n",
" agg_df = agg_df.assign(\n",
" Final_Score=lambda x: x['Total Score'] / x['Total Score'].sum() * 100.00\n",
" )\n",
" agg_df = agg_df.sort_values(by='Final_Score', ascending=False)\n",
" agg_df['Topic'] = agg_df.index\n",
" rem_topics= [x for x in list(topic_color_dict.keys()) if not x in agg_df.Topic.tolist()]\n",
" if len(rem_topics) > 0:\n",
" rem_agg_df = pd.DataFrame({'Topic': rem_topics, 'Final_Score': 0.0, 'Total Score': 0.0})\n",
" agg_df = pd.concat([agg_df, rem_agg_df])\n",
" title = \"Final Scores\"\n",
" display(HTML(f'<left><h1>{title}</h1></left>'))\n",
" display_final_df(agg_df)\n",
" if len(sub_2_result_df) > 0:\n",
" sub_result_df = pd.concat([sub_result_df, sub_2_result_df]).reset_index(drop=True)\n",
" agrilla_df = sub_result_df.copy()\n",
" else:\n",
" print(query)\n",
" display_final_df('None')\n",
" if len(sub_2_result_df) > 0:\n",
" agrilla_df = sub_2_result_df.copy()\n",
"\n",
"def on_agr_button_next(b):\n",
" global agrilla_df, annotated\n",
" with bhvr_outt:\n",
" clear_output()\n",
" if agrilla_df is not None:\n",
" # convert the dataframe to the structure accepted by argilla\n",
" converted_df = convert_df(agrilla_df)\n",
" # convert pandas dataframe to DatasetForTextClassification\n",
" dataset_rg = rg.DatasetForTextClassification.from_pandas(converted_df)\n",
" # delete the old DatasetForTextClassification from the Argilla web app if exists\n",
" rg.delete(dataset_rg_name, workspace=\"admin\")\n",
" # load the new DatasetForTextClassification into the Argilla web app\n",
" rg.log(dataset_rg, name=dataset_rg_name, workspace=\"admin\")\n",
" # Make sure all classes are present for annotation\n",
" rg_settings = rg.TextClassificationSettings(label_schema=list(topic_color_dict.keys()))\n",
" rg.configure_dataset(name=dataset_rg_name, workspace=\"admin\", settings=rg_settings)\n",
" annotated = True\n",
" else:\n",
" display(Markdown(\"<h2 style='color:red; text-align:center;'>Please score the answer first!</h2>\"))\n",
" \n",
"def on_eval_button_next(b):\n",
" global annotated\n",
" with bhvr_outt:\n",
" clear_output()\n",
" if annotated:\n",
" display(f1(dataset_rg_name).visualize())\n",
" else:\n",
" display(Markdown(\"<h2 style='color:red; text-align:center;'>Please score the answer and validate the data first!</h2>\"))\n",
"\n",
"bhvr_nlp_btn.on_click(on_bhvr_button_next)\n",
"bhvr_agr_btn.on_click(on_agr_button_next)\n",
"bhvr_eval_btn.on_click(on_eval_button_next)\n",
"\n",
"display(bhvr_label, bhvr_box)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a2e51901",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3.9 (Argilla)",
"language": "python",
"name": "argilla"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "258.097px"
},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|