from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM import torch # 初始化 Qwen 模型與 tokenizer(加上 trust_remote_code) model_id = "Qwen/Qwen-1_8B-Chat" device = "cuda" if torch.cuda.is_available() else "cpu" print(f"🚀 載入模型:{model_id} on {device}") tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float32 ).to(device) # 建立 FastAPI 應用 app = FastAPI() chat_history = [] class Prompt(BaseModel): text: str reset: bool = False @app.post("/chat") async def chat(prompt: Prompt): global chat_history print(f"\n📝 使用者輸入:{prompt.text}") if prompt.reset: chat_history = [] print("🔄 Chat history 已重置") chat_history.append({"role": "user", "content": prompt.text}) # 組合 ChatML 格式 chatml = "" for msg in chat_history: chatml += f"<|im_start|>{msg['role']}\n{msg['content']}\n<|im_end|>\n" chatml += "<|im_start|>assistant\n" try: inputs = tokenizer(chatml, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() print("🧠 原始模型回覆:", response) # 擷取 assistant 回覆內容 if "<|im_start|>assistant\n" in response: reply = response.split("<|im_end|>")[0].split("<|im_start|>assistant\n")[-1].strip() else: reply = response # fallback if not reply: reply = "⚠️ 模型未產生回覆,請稍後再試。" print("⚠️ 回覆為空字串") chat_history.append({"role": "assistant", "content": reply}) print("✅ 最終回覆:", reply) return {"reply": reply} except Exception as e: print("❌ 模型回應錯誤:", e) return {"reply": "目前無法取得模型回覆,請稍後再試。"} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)