Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,16 +3,21 @@ from pydantic import BaseModel
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
# 初始化 Qwen 模型與 tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 8 |
-
|
| 9 |
trust_remote_code=True
|
| 10 |
)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
-
|
| 13 |
trust_remote_code=True,
|
| 14 |
torch_dtype=torch.float32
|
| 15 |
-
).to(
|
| 16 |
|
| 17 |
# 建立 FastAPI 應用
|
| 18 |
app = FastAPI()
|
|
@@ -26,8 +31,11 @@ class Prompt(BaseModel):
|
|
| 26 |
@app.post("/chat")
|
| 27 |
async def chat(prompt: Prompt):
|
| 28 |
global chat_history
|
|
|
|
|
|
|
| 29 |
if prompt.reset:
|
| 30 |
chat_history = []
|
|
|
|
| 31 |
|
| 32 |
chat_history.append({"role": "user", "content": prompt.text})
|
| 33 |
|
|
@@ -38,7 +46,7 @@ async def chat(prompt: Prompt):
|
|
| 38 |
chatml += "<|im_start|>assistant\n"
|
| 39 |
|
| 40 |
try:
|
| 41 |
-
inputs = tokenizer(chatml, return_tensors="pt").to(
|
| 42 |
outputs = model.generate(
|
| 43 |
**inputs,
|
| 44 |
max_new_tokens=512,
|
|
@@ -46,11 +54,24 @@ async def chat(prompt: Prompt):
|
|
| 46 |
temperature=0.7,
|
| 47 |
top_p=0.9
|
| 48 |
)
|
| 49 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
chat_history.append({"role": "assistant", "content": reply})
|
|
|
|
| 53 |
return {"reply": reply}
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
print("❌ 模型回應錯誤:", e)
|
| 56 |
return {"reply": "目前無法取得模型回覆,請稍後再試。"}
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# 初始化 Qwen 模型與 tokenizer(加上 trust_remote_code)
|
| 7 |
+
model_id = "Qwen/Qwen-1_8B-Chat"
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
print(f"🚀 載入模型:{model_id} on {device}")
|
| 11 |
+
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 13 |
+
model_id,
|
| 14 |
trust_remote_code=True
|
| 15 |
)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
trust_remote_code=True,
|
| 19 |
torch_dtype=torch.float32
|
| 20 |
+
).to(device)
|
| 21 |
|
| 22 |
# 建立 FastAPI 應用
|
| 23 |
app = FastAPI()
|
|
|
|
| 31 |
@app.post("/chat")
|
| 32 |
async def chat(prompt: Prompt):
|
| 33 |
global chat_history
|
| 34 |
+
|
| 35 |
+
print(f"\n📝 使用者輸入:{prompt.text}")
|
| 36 |
if prompt.reset:
|
| 37 |
chat_history = []
|
| 38 |
+
print("🔄 Chat history 已重置")
|
| 39 |
|
| 40 |
chat_history.append({"role": "user", "content": prompt.text})
|
| 41 |
|
|
|
|
| 46 |
chatml += "<|im_start|>assistant\n"
|
| 47 |
|
| 48 |
try:
|
| 49 |
+
inputs = tokenizer(chatml, return_tensors="pt").to(device)
|
| 50 |
outputs = model.generate(
|
| 51 |
**inputs,
|
| 52 |
max_new_tokens=512,
|
|
|
|
| 54 |
temperature=0.7,
|
| 55 |
top_p=0.9
|
| 56 |
)
|
| 57 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 58 |
+
|
| 59 |
+
print("🧠 原始模型回覆:", response)
|
| 60 |
+
|
| 61 |
+
# 擷取 assistant 回覆內容
|
| 62 |
+
if "<|im_start|>assistant\n" in response:
|
| 63 |
+
reply = response.split("<|im_end|>")[0].split("<|im_start|>assistant\n")[-1].strip()
|
| 64 |
+
else:
|
| 65 |
+
reply = response # fallback
|
| 66 |
+
|
| 67 |
+
if not reply:
|
| 68 |
+
reply = "⚠️ 模型未產生回覆,請稍後再試。"
|
| 69 |
+
print("⚠️ 回覆為空字串")
|
| 70 |
|
| 71 |
chat_history.append({"role": "assistant", "content": reply})
|
| 72 |
+
print("✅ 最終回覆:", reply)
|
| 73 |
return {"reply": reply}
|
| 74 |
+
|
| 75 |
except Exception as e:
|
| 76 |
print("❌ 模型回應錯誤:", e)
|
| 77 |
return {"reply": "目前無法取得模型回覆,請稍後再試。"}
|